Universite Mohammed V Master 1AD
FACULTE DES SCIENCES Master lI-Semestre 3

RABAT /FSR Cara
Département informatique

Mobile & Cloud Computing

Pr. REDA ODussama Mohammed

2019-2020

Concuruncy in Android

Android Application Model, Processes, Ul Thread
and
Handlers

Application Components

e Android applications do not have a single entry point (e.g. no main
() function).

e They have essential components that the system can instantiate a
nd run as needed.

e Four basic components

Components Description

Activity UI component typically corresponding to one screen
Service Background process without UI
Broadcast Receiver Component that responds to broadcast Intents

Content Provider Component that enables applications to share data

Presents a visual user interface for one focused en
deavor the user can undertake.

Activities List of menu items a user can choose from or displa
y photographs along with their captions

Doesn't have a visual user interface, instead runs in
the background

Services Play background audio as the user attends to other
matters

Receives and reacts to broadcast announcements

Broadcast Receivers | An application can announce to "whoever is listening”
that a picture was taken.

Makes a specific set of the application’s data availa

Content Providers ble to other applications.
An application uses a contact list component

A simple message passing framework. Using intents
you can broadcast messages system-wide or to a ta

Intents rget Activity or Service.

Android Component Model

e An Android application is packaged in a .apk file.

v A .apk file is a collection of components.
|Iiﬁ;pplicmiﬂn

Prociess

! Activity || Activity '

Content Provider '
|
Service 'l Service I

v" Components share a Linux process: by default, one process pe
r .apk file.

v .apk files are isolated and communicate with each other via In
tents or AIDL.

v Every component has a managed lifecycle.

12

Processes and Threads

e Processes

v When the first of an application’'s components needs to be ru
n, Android starts a Linux process for it with a single thread o
f execution (Main Thread). Additional threads can be

spawned for any process.

{ “-PI{":‘;:!:““ ! Process -—L[Main Thread]

» Each component can run in its own process.

»You can arrange for components to run in other processes.

» Some components share a process while others do not.

» Components of different applications also can run in the sa
me process.

v" Android may decide to kill a process to reclaim resources.

Component Lifecycles (Cont)

e Processes and Lifecycles (Cont)
v" Five levels in the Importance Hierarchy

| + One that is required for what the user is currently doing

/1 ¥ Conditions (One of them should be met)

' * [t is running an activity that the user is interacting with.
* It hosts a service bound to the activity that the user is
interactingwith.

*It has a Service object executing one of its lifecycle
callbacks {onCreate(), onStart(), or onDestroy()) !
= It has a BroadcastReceiver object beingexecutingits |
onReceive() method.

. ¥ One that doesnot haveany foreground components, but still |
. canaffect what the user sees on screen

+ ¥ Conditions (One of them should be met)

' = It hosts an activity that is not in the foreground, but is
still visible to the user.

* [t hosts a service bound to avisible activity.

. ¥ One running a service that has been started with the
. startService() and that does not fall into either of the two higher
W categories

¥ One that doesnot hold any active application components.

Processes

e Android may decide to shut down a process at some point, when
memory is low and required by other processes that are more im
mediately serving the user.

e Application components running in the process are consequently d
estroyed.

e A process is restarted for those components when there's again
work for them to do.

o When deciding which processes to terminate, Android weighs the
ir relative importance to the user.

e For example, it more readily shuts down a process with activities
that are no longer visible on screen than a process with visible ac
Tivities.

e The decision whether to terminate a process, therefore, depend
s on the state of the components running in that process.

Processes and Threads

e Threads
v" Main Thread (UL Thread)

~ It is in charge of dispatching events to the appropriate
user interface widgets, including drawing events.

» It is also the thread in which your application interacts
with components from the Android UI toolkit (components
from the android.widget and android.view packages).

W As such, the main thread is also sometimes called the
UI thread.

Android Threading

\ Mais (U1 Thisas |
|

Android creates a thread called "main™ (often referred
to as the Ul thread) for each application when it starts.

Processes and Threads (Cont)

e Threads
v" Main Thread

» All components are instantiated in the main thread
(UI Thread) of the specified process.

» System calls to the components are dispatched from the
main thread (UI widgets and views).

B Methods that respond to those calls always run in the
main thread of the process (such as onKeyDown() to

report user actions or a lifecycle callback method).

18

Processes and Threads (Cont)

e Threads
v" Main/UTI Thread (Exemple)

» The user touches a button on the screen

B The application s UI thread dispatches the touch even
t to the widget.

B The widget sets its pressed state and posts an invalida
te request to the event queue.

B The UI thread dequeues the request and notifies the
widget that it should redraw itself.

20

Processes and Threads (Cont)

e Threads
v" Main Thread (UI Thread)

» When an app performs intensive work in response to
user interaction, this single thread model can yield poor
performance unless the application is implemented properly.
» Specifically, if everything is happening in the UI thread, p
erforming long operations such as network access or datab
ase queries will block the whole UL,

B When the thread is blocked, no events can be
dispatched, including drawing events.

B From the user's perspective, the application appears
to hang.

21

Processes and Threads (Cont)

e Threads

v" If the UI thread is blocked for more than a few seconds (ab
out 5 seconds currently) the user is presented with the infam
ous "application not responding” (ANR) dialog.

» The user might then decide to quit your application and
uninstall it if they are unhappy. So,

4 No component should perform long or blocking operations
(e.g. I/0 operations, network access, computation loops)

7 ﬁ

Processes and Threads (Cont)

e Threads (Cont)
v" Solution

e Use a background thread to do the task (e.g. I/O operations, net
work access, computation loops)

v" Consequence

Background thread and UT thread are running concurrently
and may have race conditions if they modify UI
simultaneously (e.g., UL switches to a different orientation)

The Andoid UI toolkit is not thread-safe

_____——-—-—-'—‘

-———‘-—-—_—-‘

23

Processes and Threads (Cont)

e Threads

v" The Andoid UT toolkit is not thread-safe. So, you must not
manipulate your UL from a worker thread—you must do all ma
nipulation to your user interface from the UI thread.

Do not access the Android UI toolkit from outside the UI

U3 Cmprenss

NEW THREAD

MAIN THREAD A

Processes and Threads (Cont)

No component should perform long or blocking operations (such as
networking operations or computation loops) when called by the
system, since this will block any other components also in the
process.

e Since the user interface must always be quick to respond to user
actions, the thread that hosts an nchw% should not also host
time-consuming operafions like network downloads.

e Anything that may not be completed quickly should be assigned
foa atﬁerenf thre pawn separate threads for long—
operations (background work)).

That's Multithreading in A '
‘__f____‘_a

25

Processes and Threads (Cont)

e Threads (Cont)

v" Anything that may not be completed quickly should be assigne
d to a different thread.

» Threads are created in code using standard Java Thread o

bjects.
v" Some convenience classes Android provides for managing thr
e i

» Looper for running a message loop within a thread
» Handler for processing messages
e

» HandlerThread for providing a handy way for starting a ne
w thread that has a looper

26

Android event classes: some details

eAndroid defines a set of classes for eve
nt-driven programming in conjunction wit
h threads.

*A thread may have at most one Looper
bound to a MessageQueue.

eEach Looper has exactly one thread and
exactly one MessageQueue.

eThe Looper has an interface to register
Handlers.

e There may be any number of Handlers
registered per Looper.

e These classes are used for the UL
thread, but have other uses as well.

/

' Looper

Message

MessageQupue .

Handler

A

L?Jl'(%\ 1-\5 m«i-\.\—s‘
:t: owd
/

Y
_/

Android Handler

r Android's mechanism to s and Ss
Mess and bl ects associate
wu%ﬁ a ﬁr‘ea S .

e Each Handler instance is associated with a single thread and
that thread's message queue

A handler is bound to the thread / message queue of the
thread that creates it

from that point on, it will deliver messages and runnables to
that message queue
That thread processes msgs

32

Android Handler

Thread -_“
Handler
\ Message

g

i V
Message },_}
---_-_-_-_-.—-'-.
Handler
Message
Thread ‘
/ NeasRgr
/ Message

Message Queue J

Y

e

od O

s

Ul Thread
| (mainthread)

e

33

Android Handler

public class MyActivity extends Activity {
[...]
/I Need handler for callbacks to the Ul thread
final Handler mHandler = new Handler();
/I Create runnable task to give to Ul thread
final Runnable mUpdateResultsTask = new Runnable() {
public void run() {
updateResultsInUi();

}

H

@Override

protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedlnstanceState);

[.-] Ul Thread

T
m! SimpleApp

Start Stop

Generated numberis: 7

needs to
update

35

Android Handler

protected void startLongRunningOperation() {
/I Fire off a thread to do some work that we shouldn't do directly in the Ul thread
Thread t = new Thread() {
public void run() {
mResults = doSomethingExpensive();
mHandler.post(mUpdateResultsTask); I, M{) w
! ——
b
t.start();
}

private void updateResultsIinUi() {
// Back in the Ul thread -- update our Ul elements based on the data in mResults

[-..] Ul Thread

- .
B! SimpleApp

gl Generator

Start Stop 36

Generated number is: 7

needs to
update

Common Pattern

private Handler mHandler = new Handler(); // UI handler

private Runnable longTask = new Runnable() {

// processing thread
public void run() {
while (notFinished) {
// doSomething

mHandler.post(taskToUpdateProgress);

¥
// mHandler.post(taskToUpdateFinalResult

| &

Thread thread = new Thread(longTask);
thread.start(); "

38

Use the post(Runnable) method

* This method also calls to run a Runnable on
the Ul thread.
¢ Uses the same event message queue as
runOnUiThread() does.

Viewpostinew Rumable()
@0verride
public void run() {
/{ do your Ul work here
}
Di

Slide 15

Use the runOnUiThread(Runnable) method

* This method calls to run a Runnable on the
Ul thread.

v [fthe current thread isthe Ul thread, then
the action is executed immediately.

v [fthe current thread is not the Ul thread, the
actionis posted to the event queue of the Ul
thread

activity.runOnUThread (new Runnable(] {
— @override
public void run() {
// do your Ul work here
|
i

§hde 11

Concuruncy in Android

Android Application Model, Processes, Ul Thread
and
Handlers

Android Application Model, Processes, Ul Thread
and
Handlers

Supports de présentation

http://moss.csc.ncsu.edu/~mueller/gl/
http://db.cs.duke.edu/courses/cps110/fall12/slides/
http://zoo.cs.yale.edu/classes/cs434/cs434-2012-fall/lectures/

Universite Mohammed V Master 1AD
FACULTE DES SCIENCES Master lI-Semestre 3

RABAT /FSR Cara
Département informatique

Mobile & Cloud Computing

Pr. REDA ODussama Mohammed

JMEZ016

Universite Mohammed V Master 1AD
FACULTE DES SCIENCES Master lI-Semestre 3

RABAT /FSR Cara
Département informatique

Mobile & Cloud Computing

Pr. REDA ODussama Mohammed

2019-2020

