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GENERALITES

OBJECTIF DES TRAVAUX PRATIQUES

La physique est la science qui étudie les propriétés générales de la matiére et permet
d'établir de nombreuses lois qui servent tres souvent de fondement aux autres sciences.

Ces lois physiques doivent étre vérifiées par des expériences reproductibles en vue
d'illustrer certains phénomenes physiques traités dans le cours et déterminer les grandeurs
physiques avec une bonne précision. C'est le but essentiel des travaux pratigues.

Ces travaux permettent aussi d'apprendre a manipuler, tracer des courbes, interpréter les
résultats obtenus et en tirer des conclusions.

L'étude expérimentale d’un phénomeéne physique nécessite l'acquisition d'un ensemble
d'appareils pour réaliser des montages, faire des mesures en tenant compte de toutes les erreurs

commises et comparer ensuite les résultats obtenus aux valeurs théoriques.

1- MESURES ET INCERTITUDES

Lors d'une mesure, il est impossible de trouver la valeur exacte d’une grandeur physique
X. Mesurer cette grandeur, revient non seulement a chercher sa valeur mais a lui attribuer aussi
une autre valeur appelée incertitude absolue pour pouvoir qualifier la qualité de la mesure. Cette
incertitude est associée aux erreurs de mesures dues a l'instrument de mesure, a 1’opérateur et
a la variabilité de la grandeur mesurée.

0,

«* Notions d’erreur et d’incertitude

> L’erreur sur une mesure est la différence entre la valeur obtenue (Valeur mesurée) et
la valeur réelle (valeur exacte).
Erreur = valeur mesurée — valeur exacte.
L’erreur est une grandeur algebrique, positive si la mesure est par exces, négative si la mesure
est par défaut.
» L’incertitude de mesure est l'intervalle au sein duquel se trouve probablement la valeur
vraie. Elle caractérise la dispersion des valeurs qui peuvent étre attribuées a la grandeur
mesurée. Elle est positive, de méme nature que X et notée Ax.

Le résultat de la mesure de x est notée donc : x = (Xo + AXx).




«» Types d'erreurs de mesures

On distingue deux types d’erreurs :
» L’erreur systématique
Lors d’une mesure unique, la précision de 1’appareil de mesure, la fagon dont il est utilisé et la
qualité de la mesure, sont a prendre en compte : I’erreur correspondante est dite systématique
ou de biais. Par exemple, un appareil peut étre mal étalonné : le zéro peut étre mal réglé,
I’échelle peut étre mal graduée, etc. L'erreur systématique est donc une erreur de méthode (due
au matériel, ou a I’expérimentateur). Elle est la plus difficile a détecter et nécessite une vigilance
constante.

L’évaluation de celle-ci consiste a considérer alors toutes les erreurs commises.
» L’erreur de mesure accidentelle
Lorsqu’un méme opérateur répete plusieurs fois, dans les mémes conditions, la mesure d’une
méme grandeur, les résultats peuvent étre différents. On parle alors d’erreur de mesure

accidentelle .Elle est due essentiellement aux réflexes de I'opérateur.

% Types d'incertitudes

> Incertitude systématique

L incertitude systématique est associée aux erreurs systématiques.

Incertitude systématique = la plus petite grandeur mesurée avec un instrument.
» Incertitude accidentelle

Cette incertitude est due a I'opérateur, lorsqu’il fait n mesures (gz, g2,..., gn) d’une méme
grandeur physique G dans les mémes conditions. Pour la calculer, on prend la valeur moyenne:
gm =valeur moyennede g = Qi1+ g2+ 0s3...../n =>0i /n aveci=1,2....... n. Plus le nombre de

mesures « n » est grand, plus gm est proche de go.

L’incertitude accidentelle est la valeur la plus grande entre les écarts|g, — g -
Agzsup|gm—gi| aveci=1,2....... n.
Cas ou 2 mesures gz et gz sont effectuées:

Agz 91_92




> Incertitude absolue

L'incertitude absolue Ax est I'erreur maximale que 1'on peut commettre dans I'évaluation de X.

L’incertitude absolue est la somme des deux incertitudes précédentes :

Ag = Ag systématique T AQ accidentelle-

C’est une quantité toujours positive et de méme unité que g. La valeur exacte de g est telle que :
Omoyen = AQ < § < QGmoyen + AQ.
Avec:Ag <<g,Ag > 0
Ag = (AQ) systematique SI UNe Seule mesure est effectuée.
Si la grandeur G est affectée de plusieurs incertitudes (Ag)1 ,( Ag)z..... I'incertitude absolue
totale est: (Ag) Totale = (Ag)1 +( Ag)2+.....
e Si dans une série de mesures, une valeur est trop écartée de la moyenne, elle doit étre
refaite.
e Le résultat d’une mesure g doit étre toujours accompagné de son incertitude absolue Ag
et de son unité exprimeée, en général, dans le systeme international [S.1].

9 =(g, £Ag)Unité.

e || faut donner la valeur de Pincertitude absolue avec un seul chiffre significatif.

*Présentation de résultats:

Lors de la présentation finale d'un résultat il est important d'accorder le nombre de chiffres
significatif a la précision déterminée.
Si une incertitude n'est pas donnée, le niveau du dernier chiffre significatif est admis comme
ordre de grandeur de I'incertitude.

Exemple :
On veut mesurer le temps t nécessaire pour un tour a l'aide d'un chronométre.

L’incertitude systématique dans ce cas est : At, =0,01s (appelée incertitude de lecture).

Pour déterminer I’incertitude accidentelle, on fait trois mesures successives de t.
On trouve alors les valeurs suivantes : t1 = 6,24 s, o= 6,34 set t3 = 6,29 s.

La valeur moyenne de t, = L;r% =6,29s.

Atace = sup |tm — t|| = 0,055
At —AL+At.  AN: Atrom=0,06s ol t= (6,29 % 0,06) s.

Totale




*Comparaison de deux résultats

Comparer deux résultats (g1 = Agi), (g2 = Agp) revient a verifier I'inégaliteé :

Théoréme de comparaison : |9, — 0,|<(Ag )l +(Ag )2

Qui traduit le chevauchement des intervalles [g: - Ag1, 91 + Agi] et [g2 - Agz, 92 + Aga].

Conclusion : Si I'inégalité est vérifiée, on peut dire que la différence entre g; et g> n'a pas de

signification physique.
» Incertitude relative

On appelle incertitude relative (ou précision) sur G, la quantité Ag /g. Elle est positive,
sans unité et souvent exprimée en pourcentage (%). Elle renseigne mieux que ’incertitude
absolue sur le degré d’exactitude d’une mesure. Une mesure est d’autant plus précise que son

incertitude relative est faible.
Exemple:

Une masse est mesurée avec une précision de 5 % cela signifie que Am/m =2 %.
Si: m=500g Am =mx2%=10g. D’ou m = (500 £10) g.

Comparaison de deux méthodes

La grandeur G est mesurée par deux méthodes différentes qui donnent les résultats (g, + Ag, )

et (g, £Ag,).
La mesure la plus précise correspond a celle dont l'incertitude relative est la plus faible. Si :

Ay, _Ag,
9 O

Calcul d’incertitude

. la premiére méthode est la plus précise.

En général, la détermination d’une grandeur G s’effectue par la mesure d’autres grandeurs
physiques intermédiaires X, Y, Z, ...
La grandeur G est alors définie par sa valeur g telle que : g = f(x, y, z, ...).

Connaissant les incertitudes Ax, Ay, Az, ...des mesures X, y, z, ..., on détermine alors

I'incertitude absolue Ag en fonction de Ax, Ay, Az, ... en faisant un calcul d'incertitudes.




18E étape : Calcul des différentielles partielles.

eme , , -

2= étape : Regroupement des coefficients de dx, dy, dz..
3eme étape : Majoration physique.

» Cas simples d'une seule variable : G= f(x)

On calcule la différentielle de g soit : dg = f '(x) dx.
Par majoration physique, on obtient: Ag = |f '(x)|.Ax.

Cas de plusieurs variables indépendantes: g = f ( X,v,z....).

Pour faire ce calcul, on suit les étapes suivantes :
- On calcule séparément les dérivées partielles puis dg totale.

- On fait la majoration physique pour calculer Ag (d est remplacé par A et les coefficients

de dx, dy,...sont pris en valeur absolue).

Ag =|f'(X)|.Ax+| ' W)|.Ay +| f'@)] Az +.....

> Cas de plusieurs variables liées

v' Premier cas : la fonction est donnée sous forme de sommes, différences, produits ou

quotients.

Exemple:
g (x,y,2) = 2xy + 1y — yz®

Calcul de dg :
dg =2y dx + 2x dy — 1/y? dy - 3yz 2 dz - Z%dy.

Regroupement des coefficients
dg= 2ydx+ (2x— 1/y? - z%dy -3yz?dz.

Majoration physigue

1
(ZX—F—ZSJ

Ag =[2y|Ax+ Ay+‘—3yzz‘Az




v" Deuxiéme cas

Lorsque I’expression de g comporte seulement des produits et des quotients, on peut simplifier

les calculs en utilisant la "méthode des logarithmes™, comme dans I’exemple suivant :

Exemple :

g (X,y,z) =2 X2y /[ x-y.
On passe par le Log :
Log (g) = Log 2 + 2Log (x) +Log (y) — Log (x-Y).

On différencie le Loq :
dg _,dx dy d(x—y) ,dx dy dx _ dy
g Xy X=y X 'y X=y X=Yy

On regroupe :
d_gz(z_ijdﬂ(ai}dy
g X X-Yy X X-Yy
On majore :
(2 1 ] (2 1 J
X X-Yy X X-—Y
(E_Lj (LL] Ay}
X X-—Y X X-Y

2- REPRESENTATION GRAPHIQUE

g

Ag:g{

En physique, il est courant de passer par une représentation graphique pour essayer de verifier
une loi.

La droite étant la représentation la plus simple, on cherche a exprimer la loi a tester sous la
forme y =ax+b.

Les rectangles d'incertitudes (ou barres d'erreurs) sont portés sur le graphe pour juger de la
validité de I'interprétation.

La représentation graphique de la fonction y = f(x) = ax + b est une droite.
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Considérons deux points A1 (X1, y1) et Az (X2, y2) de la droite D (figure ci-dessous). On appelle

pente de cette droite, le rapport p = Yo N1 :

X, =X

On montre que p = a =tg (o).

YJL

hE

hil

X

Figure 1. Représentation graphique d'une fonction linéaire

En mathématique, quand le repere xOy est orthonormé, la pente p = tg () est un nombre

sans unité.

En physique, les grandeurs X et Y ont des unités. Par consequent la pente p = V2= H , aune

X, =X

unité: p= % et donc p # tg (o).

Tracé de courbe

Chaque grandeur X (ou Y) est mesurée avec une certaine incertitude. Les résultats de

mesure (X = Ax) et (y = Ay) sont en général regroupés dans un tableau :
Pour tracer la courbe Y = f(X), on procéde de la maniéere suivante :

» On commence par tracer les axes des abscisses X et des ordonnées Y sur les bords d'un
papier millimétré; les unités de X et de Y doivent étre indiquées.

» On choisit les échelles des axes de fagcon que la courbe occupe le maximum de surface du
papier millimétré (la pente d’une droite obtenue a partir de ce graphe sera alors la plus
précise).

» On place sur la courbe les points expérimentaux A (Xi, Yi). Lorsque la courbe n’est pas une

droite, on joint ces points par des traits sans tenir compte des incertitudes.




Comment traduire graphiguement les incertitudes expérimentales ?

Lorsque la courbe est une droite, on tient compte des incertitudes.

La mesure exacte alors de chaque point A; (i, yi) se trouve dans intervalle [Xi -AXi, Xi + Axi]

pour I’axe des abscisses, et [yi- Ayi, yi+ Ayi] pour 1’axe des ordonnées (Voir figure 2).

Ceci permet de tracer un rectangle d’incertitude de cotés 2 Ax; et 2Ayi, centré en A; (Xi, Vi).

Autour de chaque point expérimental on trace un rectangle d’incertitude.

Y (Unité)
2AX;
Vit A¥ilieeearensnnnnnnnn
DL T T T S . Ai I 2 Ayl
Yi- Ayi ................ : :
X;- AX; Xi X+ AX; X—([fnité)

Figure 2: Représentation graphique des incertitudes expérimentales

Remarque : Il se peut que ce rectangle se réduit a un segment ou un point si I'une ou les deux
incertitudes sont négligeables ou I'échelle choisie n'est pas bonne.

On trace ensuite deux droites limites D1 et D2 ayant respectivement la pente minimale P et
la pente maximale Pa.
D1 et D2 doivent passer par le maximum de rectangles d’incertitudes (exemple ci-dessous). Ceci
permet de calculer la pente moyenne P moyenne €t SON incertitude AP moyenne COMmMe suit :

B+P -
F)moyenne =1 5 z Et AP =|Pl P2|

moyenne 2

L’échelle ainsi que le titre de la courbe doivent étre mentionnés sur le papier millimétré. Les

unités indiquées sur les deux axes sont les unités réelles des grandeurs X et Y.




Y(Unité), Titre: Y=1(X)

0,144 .
0,124
0,104 + {
0,84 =
0,6 4
0,4 4 + Echelle: .[ lem=>3 (Unit¢ X)
| 1em — 0,2 (Unité Y)
02 15
0 o v ' ! ' 1 T T

0 5 10 15 20 25 30 35 40 45 X(Uniteé)
Figure 3: Représentation graphique de la fonction Y = f(X) avec rectangles d'incertitude.

3 - UTILISATION DU TACHYMETRE

Présentation

Le tachymetre numérique portable est un instrument compact qui permet de mesurer la vitesse
d'un systeme en rotation. Le principe de fonctionnement (méthode optique), consiste a projeter

un faisceau lumineux sur une ou plusieurs bandes minces collées a ce systéme.

Ces bandes reflétent la lumiere vers le tachymeétre ce qui conduit a la détermination de la vitesse

de rotation. Le résultat apparait automatiqguement sur I'écran LCD.

La distance entre le tachymeétre et le systeme en rotation peut aller jusqu'a 600mm. La valeur

mesurée est exprimée en tour par minute (tr/mn) avec une précision AN/N souvent égale a 2%.

En pratique, les valeurs min, max. et moyenne ainsi que la derniere valeur mesurée, sont

enregistrées (bouton menu). Voir figure 4.




testo 465 (i

Figure 4 : Le tachymeétre numérique portable

Les différentes parties d’un tachymeétre sont:

1
2
3

A\

YV V VYV V

: Ecran d'affichage.
: Bouton de visualisation : derniére valeur. Valeurs min, max.
: Bouton d’alimentation et initialisations a la valeur 0.

4 - ORGANISATION DES TP ET INSTRUCTIONS

Tout étudiant ayant fait un changement de filiere ou nouveau inscrit (et dont le nom ne
figure pas sur les listes affichées au Laboratoire de TP de physique), doivent contacter
immédiatement le responsable de TP et apporter une photocopie de Iattestation
d’inscription.

Les étudiants redoublants ayant une note de TP supérieure ou égale a 10/20 sont dispensés.
Seuls les étudiants ayant déposé une demande aupres du responsable peuvent passer les TP.
La présence aux travaux pratiques est obligatoire et controlée.

Toute absence non justifiée ou un compte rendu non remis entrainent la note 0/20.
L’absence non justifiée au 2/3 de TP ne permet pas la validation du module.

Les notes du contréle de TP de physique sont affichées au Laboratoire. L’étudiant peut
consulter sa copie sur demande déposée au Laboratoire.

Dans la salle de T. P, ne jamais alimenter un montage (branchement au secteur) : appeler
avant I'enseignant pour la vérification du montage.

Il est strictement interdit de déplacer le matériel (fils de connexion, voltmetre..), en cas de
panne appeler I'enseignant.

Avant de partir : ranger le matériel, démonter les montages et éteindre les appareils

électriques.
10




» Chaque manipulation doit étre préparée auparavant. Le travail dans la salle de T.P doit étre
entierement consacré a la réalisation des montages, aux mesures, au tracage des courbes et
aux interpretations.

» Le compte rendu comprend :

e But: c’est ’objectif qu’il faut atteindre avec les mesures effectués.
e Partie pratique (manipulation) : concerne les mesures réalisées dans la salle
(regroupés dans des tableaux), les calculs, les interprétations et les
conclusions. Les questions théoriques (calcul d’incertitudes, ...) doivent étre
traitées avant de venir en salle de T. P.
> A lafin de chaque séance, un compte-rendu regroupant tous les résultats de la manipulation

réalisée, est remis.
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ANNEXE: UNITES DU SYSTEME INTERNATIONAL (SI)

Unités de base du systéme SlI.

Grandeur Unité Symbole Dimension

Longueur Métre m L

Masse Kilogramme kg M

Temps Seconde S T

Intensité de courant Ampere A I

Unités dérivées.

Grandeur Unité Symbole | Dimension |« Correspondance »
Charge électrique Coulomb C Q=IT As=C

Energie, travail Joule J ML?/T? kg.m?.s2 =]
Fréquence Hertz Hz UT st=Hz
Puissance Watt w P=ML¥T® |kg.m?s3=W
Résistance électrique Ohm Q P/IP=U/l |kgm?s3A2= Q
Tension électrique Volt \V; ML2T31! kgmisiAl=V
Grandeur Unité Symbole
Angle Radian rad
Angle solide Stéradian sr
Accélération Meétre par seconde carrée m.s2
Accélération angulaire Radian par seconde carrée rad.s?
Vitesse Metre par seconde m.s*
Vitesse angulaire Radian par seconde rad.s*

12




TP1: ETUDE D'UN MOUVEMENT DE ROTATION

I- BUT
e Ftude d’un mouvement de rotation uniformément accéléré autour d’un axe fixe.

e C(Calcul d’'un moment d’inertie.

I1- PARTIE THEORIQUE
Il —1 Moment d’inertie :
Soit I, le moment d’inertie du systéme par rapport a I’axe (A) :
[ =[o+2I
¢ lo=moment d’inertie du systéme a vide, par rapport a I’axe (A), sans les masses M.
¢ li=moment d’inertie de chacune des masses M par rapport a (A).
Grace au théoréme d’Huygens, II s’écrit :
Ii=Md2+ In

¢ Md?=moment d’inertie de M, confondue en son c.d.g, par rapport a (A).

L (A) (A%)
¢ |r=moment d’inertie de M par rapport d
a (A) paralléle & (A) en passant par le | === ~=====~=~ » , M
. = ==y
cdgdeM: 74'__1_
I
M (/7 D12+D22 “““““
= —+2—2 (1 Dil D2
Y4 (3 4 S 1 [
1
_____ Yy
Avec :

¢ = longueur du cylindre M.
D;: : Son diamétre intérieur.
D, : Son diamétre extérieur.

En définitive nous avons :

[=1o+2Md?+ 21 (2)
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I1 -2 Loi du mouvement :
C’est une relation entre 0 (abscisse angulaire) et le temps t.

Dans notre cas, on démontre que cette relation peut s’écrire :

0=100 +k t+k,
2

* @ = Accélération angulaire du mouvement.

* ki1 et ko sont 2 constantes déterminées par les conditions initiales.

Si a I’instant t = 0 : 6= 0 (abscisse initial nul) et % =0 (vitesse initiale nulle), alors ki=k.=0 et

I’équation du mouvement devient :

0==-0t"(3
0t ()

L’expression de & est donnée par la formule :
. mgr
g=—"9"_

| +mr

(4) (g=accélération de la pesanteur)

Pour une masse m donnée, @ est constante et le mouvement est uniformément accéléré.

I11- DISPOSITIF EXPERIMENTAL.

Le dispositif expérimental est composé de :

- Un tambour, de rayon r, monté sur un roulement a billes et supporté par une tige verticale
matérialisant I’axe de rotation (A).

- Une tige horizontale, solidaire du tambour, portant 2 masses identiques M disposées a égale
distance d=25cm de I’axe.
- Une masse m portée par un fil passant sur une poulie.
- Un chronomeétre manuel pour mesurer le temps.
a) b)

Figure 5 : a) Dispositif expérimental, b) Schéma représentatif

14




IV- MANIPULATION

Nous allons étudier expérimentalement le mouvement pour calculer 6.

Ensuite, d’apres la formule (4), nous allons déterminer le moment d’inertie lo.

IV — 1 Détermination de 0 :

a) Placer les deux masses M a la distance d=25 c¢cm de part et d’autre de la tige horizontale.

Dans toutes les expériences, le mouvement débutera a 1’instant t=0 a partir du repos. L’angle 0

sera mesuré en nombre entier de tours (N tours).

N(tours) | ti(s) | t2(s) | tm(s) | Atm(S) | At,(s) | At(s) | t2(s?) | At?(s?) | N/t2(tr/s?)

1

2

3

4

Pour chaque valeur de N, le temps est mesuré 2 fois : t1 et t2 ; t est la moyenne et At I’incertitude:

At = At +At,

At, = o=t
2

Avec : At, est la précision du chronométre = 0,02 s.

b) Représenter N = f(t?) sur un papier millimétré en notant les rectangles d’incertitudes. Nature

du phénomeéne ? Conclusion ?

c) Déterminer les pentes P1 et P2 et en déduire 1’accélération angulaire 0+ A 6. (0 =2zN).

IV — 2 Détermination de lo:

IV-2-a. Simplification de I’équation (4)
a) A I’aide de la balance et du pied a coulisse, déterminer les grandeurs suivantes avec leurs

incertitudes : M, m, r, |, Dy et Do.

15




b) Faire le calcul de mr?et 2 1 (Sans incertitudes).
¢) Calculer I’incertitude sur 2Md? : A (2Md?).

d) En déduire qu’on peut négliger mr?et 2 la-. Ainsi (4) s’écrit :

mgr

=——=— (5
I, +2Md° ®)

IV-2-b. Calcul de lox Alo

a) A partir de (5), calculer I’expression de Io et en déduire celle de Alo.

b) Application numérigue.
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TP2 : ETUDE DU GYROSCOPE

I-BUT

Le but de la manipulation est d’étudier le mouvement, autour d’un point fixe 0, d’un corps solide
dont le moment cinétique est de grandeur constante et de direction invariablement liée au solide.

II- PARTIE THEORIQUE

1 — Description du Gyroscope (Voir figure 7)

Il est constitué d’une roue de faible poids, ayant un moment d’inertie assez grand. Le moyen de
cette roue renferme un roulement a bille. Une tige T1 peut coulisser a I’intérieur du moyeu et peut
étre fixée a celui-ci par simple serrage d’une vis.

On désignera par gyroscope 1’ensemble roue-tige Ti.

La tige T1 présente a une de ses extrémités un évidement E qui servira de repére. La pointe de
I’autre extrémité tronconique de la tige T1 désigne le point fixe O, qui est aussi le point d’appui de
gyroscope sur un support fixe.

L’axe de la roue, confondu avec 1’axe de la tige T1, désignera par la suite I’axe OZ du référentiel
lié au gyroscope.

Le centre de gravité du gyroscope se trouve exactement en O lorsque le repére E de la tige coincide
avec I’extrémité A du moyeu. Lorsque le repére n’est pas dans cette position, le centre de gravité se
trouve sur ’axe OZ ailleurs qu’en 0.

Le gyroscope est en équilibre statique par rapport a 0 lorsque son centre de gravité est en 0. Dans
cette position, lors du mouvement (rotation de la roue) la réaction en 0 est indépendante de la vitesse
de rotation de la roue de son axe, on dira que le gyroscope est dynamiquement équilibré par rapport
al’axe OZ.

L’¢tude comportera une analyse qualitative du comportement du gyroscope équilibré (centre de
gravité en O) et une analyse quantitative du mouvement dit de Lagrange lorsque le gyroscope est
déséquilibré (Centre de gravité sur OZ ailleurs qu’en O).

2— Rappels théoriques et cinématique du gyroscope

a) Angles d’Euler

Les reperes choisis sont trirectangles directs :
OX1Y1Z; est fixé au laboratoire. OZ; vertical ascendant.
OXYZ est lié au gyroscope. OZ axe de rotation de la roue.

Les plans OXY et OX1Y1 se coupent suivant I’axe OU.
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La position instantanée de la roue tournante est déterminée par les angles d’Euler.

_ Yez, ouvz, _ Oeu OUWZ _ pez
Rotation autour de OZ, Rotation autour de OU Rotation autour de OZ

OX\Y.Z, OXYZ
¥ =(0X,,0U) Angle de la précession

0 =(0Z,,0Z) Angle de la rotation

¢ =(0U,0X ) Angle de la rotation propre

La rotation instantanée (2 de la roue est la composition des rotations ¥’, 6", ¢ :

—_—

Q=W621+06U +¢)EZ
b) Moment cinétique
Le moment cinétique, en O de la roue par rapport au repére fixe F : OX1Y1Z; s’écrit :
Lo = |R§—2 (D
IR désigne le moment d’inertie de la roue par rapport a son axe OZ. Dans les mouvements étudiés
par la suite, 8 sera pratiquement constante, soit donc € =0 et ¢ sera a peu pres 10 fois plus grande

que g// (1) s’écrit alors :

Lo=1, 06z (2)

c) Dynamique du gyroscope et Théoreme du moment cinétique.

Le moment de rotation dynamique est régi par I’équation suivante :

WP @)

Ou Lo et sa dérivé par rapport au temps doivent étre prises dans le repére fixe F : OX1Y1Z.

M, (F) est le moment en 0 des forces extérieures. Dans le cadre de la manipulation la force qui
intervient est due a la masse du gyroscope. Elle est dirigée suivant e”z1, son point d’application est
G. Centre de gravité du gyroscope. Elle s’écrit :

Mo(F) = 0Gez A (M +m)g (Ezl)

M est la masse de la roue, m la masse de la tige T1. OG=d.

Soit : Mo(F)=d (M +m)g(éz1)Aéz (4)

En comparant (2) & (4) on voit que Mo (F) est perpendiculaire & Lo soitdonc: Lo.Mo(F) =0 (4 bis).
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En faisant le changement d’axe et en prenant le repére Rs mobile M : OUWZ animé de la rotation
@="Véz, +Oeu par rapport au repére fixe F : OX1Y1Z1. Ona:

dlo| dLo

dt dt

+5AEO\RS = Mo(F) (5)

Rs

F
Compte tenu de (4 bis), si on multiplie scalairement (5) par Eo‘ , On obtient :
F

‘ d Lo
FOodt

Lo

Rs

dLo

=0 soit Lo

Rs

= Constante
Rs

Qui a pour solution

L’équation (5) se réduit a :

ZMEO\R = Mo (F) (5 bis)

Tenant compte de : é:O:E)/\Eo‘R — 1,y psindeu et de

Mo(F) =d (M+m)g (ézl) ~ez=d (M +m)gsin @eu . L>équation (5bis) donne :

l,yo=d(M+m)g
ce d(M
Soit - o dMmg o

IR
Si d = OG+0 (centre de gravité en 0) = w =0. Donc la roue tourne autour de son axe OZ (Vitesse

@ ). L’axe OZ est fixe par rapport a ’axe OZ1. Sid = OG #0, ’axe OZ décrit un cone d’axe OZ;
de demi-ouvertureé.

Le mouvement est appelé précession conique de vitesse y . Ainsi la pesanteur n’agit pas pour
augmenter @, c’est le paradoxe de 1’effet gyroscopique.

Comme I’indique I’expression (6), 1’étude nécessite la connaissance du moment d’inertie Ir de la
roue et la distance d.

a) Pour déterminer le moment d’inertie Ir de la roue par rapport a son axe, on réalise un pendule
pesant comme 1’indique la figure 6, en utilisant une tige T2, un systeme solidaire de la table et une
masse M1 qu’on accroche a la roue.
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Roue —_

- |
7/ ~ |
—E:E_*é SEEsmsTET - -~ tpmegmane
7 B
\:5@5 R

] AxeA B
Systéme solidaire a la table m == (G m)

Figure 6 : Schéma du pendule pesant réalisé avec la roue.

Soient : G1 centre de gravité de la masse m1, A distance de G1 a I’axe de la roue et In1 moment
d’inertie de la masse m1 par rapport a I’axe A. Le moment d’inertie total It de 1’ensemble roue-

masse mz1 par rapport a I’axe de la roue s’écrit :
I, =l +1_,+mA*(7)

La quantité accessible a la mesure est la période d’oscillation T du pendule.

Dans le cas des faibles amplitudes T s’écrit.

T =27/1;/(mgA) (8)

Pratiquement I est trés faible et sera négligé dans (7). On obtient alors :
2
I, = mlA.{ el Aj 9)

4’
b) Calcul de d : distance entre le centre de gravité G du gyroscope et le point d’appui 0. Le
théoréme du centre de gravité donne.

d=0G =

M.OG, =m.OG M : masse de la roue
( R T ){ (10)

(M +m) m:masse de latige T,
Lorsque le repére de la tige T1 coincide avec le bord du moyeu, G est en 0, donc d=0 soit :

M.OG, (0)+m.OG, (0)=0(11)

Lorsqu’on déplace la tige T1 de x (x : distance entre le bord du moyeu et le repére de la tige T1), la
distance entre le point O et le centre de gravité Gt de latige Ti reste la méme. Par contre le point
O s’¢éloigne ou s’approche (selon le sens de déplacement de T1) du centre de gravité Gr de la roue.
Onaalors:

M (OG, (0)+x)+m.OG; (O)

d=0G = —+ Xm (12)
M +m 1+ M

M

Pour les valeurs de x qui seront utilisés dans la manipulation le calcul de d donne :
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X, =+4cm=d, =-3,72cm
X, =+2cm = d, =—-1,85cm
X; =—2cm = d, =+1,85cm

11 - DISPOSITIF EXPERIMENTAL

Le dispositif utilisé dans ce TP est composé par : Figure 7
e Gyroscope : constitué par une roue et une tige T1 ’ensemble est déposé sur un support fixe
pose sur la table.
e Unetige T2, un systéme solidaire de la table et une masse m1 qu’on accroche a la roue pour
réaliser un pendule pesant.
e Un chronométre pour mesurer :
= Lapériode T. (Pendule pesant).
= Lavitesse de précession du gyroscope.

e Un tachymeétre pour mesurer la vitesse propre du gyroscope.

12y rZ

-~ EvidemsntE de la tige 71

& Extremi®¥ A duMoyeu

« Vis de serrage moyeu-tigt T1

Roulement 4 bille
— rayonde la Roue
O pointd'appui

.
3 o4 3
/c%\ [~ —— Support fixe posé sur la table

| —

Figure 7 : Schéma représentatif du Gyroscope.

IV- MANIPULATION

1V -1-Détermination du moment d’inertie IR :

Réaliser un pendule pesant comme indiqué precédemment. T represente la durée de 10 périodes T
(faibles amplitudes).

t1(s) t2(s) t3(s) tm(S) Atm(S) | At(S) At(s) T(s) AT(s)
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At =suplt, —t;|, At,= plus petite division du chronométre.
Calculer I’expression de Alr. Donner le résultat numérique de Ir et de Alg.

2
IR:mlA[iL— A], A=(27,2+0,2)cm et m,=(527£2)g

2
T

1V - 2-Vérification de la formule (6) :

Z1 z
0Z:1= Repeére fixe du laboratoire. )
. R Trajectoire de G
OZ = repere lie au systéme. o 0'{: ) ¢
c/'/ =Vitesse angulaire de précession/OZ;. ‘
. ¢ 0 G
@ = Vitesse angulaire de rotation / OZ.
M= 3 Kg (masse de la roue). o

m = 0,224 kg (masse de la tige).

Appeler 1’enseignant pour vous montrer le mode opératoire.

On lance la roue a la main et on écarte OZ de OZ; d’un angle 6 : OZ tourne autour de OZ1. On
mesure, a I’aide d’un chronometre, le temps t (s) mis par OZ pour effectuer n tours :

z,/./(rd Is)= @ (Prendre n=1 ou 2 tours).

La vitesse @ est trés grande. Sa mesure nécessite ’utilisation d’un tachymeétre. Si N (nombre de
tour/minute) est la mesure indiquée par cet appareil, nous avons :

. 27N
p(rd/s) =10 60

2-a. Indépendance de ’angle O :

Prendre x = constante = +4cm. Les angles 01, 02 et 63 sont quelconques :

6 | n=1(tour) | 7(s) %.V("d-sfl) N(Tour/min) g.o(rd.s’l) (W(pj (rd?s7?)
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Comparer les 3 valeurs de (y/ (pj

ex

. Conclusion ?

2-b. d variable :

.. 2 . * =] .. 2
x(cm) | d(cm) (ijm[%j n=1(tour) 7(s) l//(% N(Tour/min) ¢(rd'3) (//(pj (%)
+4 -3.72
+2 -1.85
-2 +1.85

Comparer (y/ go] théorique et expérimental. Conclusion ?

2-c-Prendre x=0 :

Faire coincider le repére de la tige T1 avec le bord du moyen. Dans ce cas G est confondu avec O
d = OG = 0. Lancer le gyroscope puis donner a la tige T1 une inclinaison 6. Que peut-on observer ?
Expliquer le phénomeéne en utilisant la formule (6).

Accrocher au niveau du repere de la tige T1 les quatre petites masses de valeur totale m’=0.2Kg.

Avec : d’=0,22m, Ad’=0,2cm et Am’=2g.

<. m'.g.d'
[Fe), ="
th IR

rd .
l//(?j N(Tour/min)

Mesure | n=1(Tour)

5

7(s)

N

Comparer (l//(p] et (qup] . Conclusion ?
th

ex
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TP3 : ETUDE DU VOLANT DE MAXWELL

I-BUT

Certains solides ont des formes géométriques mal déterminées, ou, ne sont pas homogenes ; par
conséquent, on ne peut pas déterminer leurs moments d’inertie théoriquement a partir de leurs
paramétres geométriques et physiques.

Le but de la manipulation est de déterminer expérimentalement :
a) Le moment d’inertie d’un systéme appelé : le volant de maxwell.
b) De vérifier que 1’énergie totale d’un systéme mécanique est bien une fonction conservative.

c) De calculer théoriquement le moment d’inertie J d’un systéme équivalent.

I1- PARTIE THEORIQUE.

e Inductance propre et Résistance interne de la bobine.

Soient R(O, x, y, z) le repére fixe 1ié¢ au laboratoire et dont I’axe ox est confondu avec 1’axe de
révolution du systéme S lorsqu’il se trouve a sa position la plus basse, et Rs(C, X,ys,zs) le repére lié
au systeme.

- A P’instant initial, le systéme se situe a la hauteur z1=h.

- A l’instant t > 0, S se situe a la hauteur z ou il a un mouvement de translation et de rotation, autour
de son axe de révolution. S a donc deux parametres de mouvement :

- La cote z du centre de gravité confondu avec C.

- L angle d’Euler : angle de rotation propre autour de CX :

R—? R

— i S

Q= goéx
Puisque le support roule (ou déroule) sans glissement sur les fils, les deux mouvements de S ne sont

pas indépendants. Ceci veut dire que S possede un seul degré de liberté. On cherchera donc la

relation qui relie z et J.

Soit un point M de la surface du support (Figure 9), la relation d’antisymétrie des vitesses donne la

vitesse de glissement de M qui doit étre nulle :

Ve (M) =V (C)+ MC AGisin =0 Vi (M) = 2 ANIC = | £ % Quand Smonte - ),

-rg.oéz Quand S descend
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( ):%:_rd_@_){z(t)=—r¢(t)+h:(S descend)
dtdt |z(t)=re(t):(S monte)

Si tous les frottements sont nuls, 1’énergie totale du systéme est conservative, d’ou :
(z=h)=E(2) =E(z=0) = Ec(z) = Ep(2) @)
Le poids est la seule force qui travail a la hauteur z. Soit

{Ep(z): Mgz + cte

cte=0;E_(z)=mgz
. (0)=0 - »(2)=mg

Le théoréme de koening donne I’énergie cinétique a la hauteur z :

1 1.2

E.(z)==Mv?+=>]
(2)=3 4
Et d’apres (1) :

1 . 2 1 . 2
E.(z)==Mr’gp +=1]
(2)=5Mrfe +2J¢

Donc I’énergie totale du systeme a la hauteur z est:

o2
E(z) :1(Mr2 +J)p +Mgz (4)
2
Par conséquent :

* & la hauteur z=h, 1’énergie totale du systéme S est égale a son énergie potentielle (¢ =0).

* a z quelconque, une partie de 1’énergie potentielle du systéme se transforme en énergie cinétique.

* a z=0, toute 1’énergie potentielle se transforme en énergie cinétique (¢ est maximum).

2

£ (h)=E(0) &> E, (2=h)=E.(2=0) &> Mgh = (Mr* +3) g,
D’ou:
2gh

62
2
r (pmax

J= 1 |[Mr?(5)

25




I11- DISPOSITIF EXPERIMENTAL

Figure 8 : Dispositif expérimental.

Le dispositif expérimental utilisé dans ce TP est composé par :

- Volant de MAXWELL : Constitué par un volant circulaire et un support cylindrique ou tige
solidaire de part et d'autre du centre C du volant. VVue de face du volant fig. 9.b....

- Deux fils de suspension identiques parfaitement flexibles et de coefficient de torsion nul.

- Un tachymétre pour mesurer la vitesse de rotation du systeme.

- Une regle pour mesurer la hauteur h.

HIIN,

Volant
le—

Axe de la roue Volant

O : Zone sensible
g au Tachymetre

Figure 9 : a) Schéma représentatif du matériel, b) Vue de face du volant

A E:i)
Sens du bobinage Seng de Rotation
dufil de'suspension : du systems
:ﬁ: Yue de coté de l'axe
x/ dusystme . —'l:x)'

Figure 10 : Sens du bobinage des fils et sens du mouvement du volant
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IV- MANIPULATION

1. Bobiner les fils de suspension du systéme autour de son support jusqu’a sa hauteur maximale
h, puis lacher le systéme sans vitesse initiale.

2. Observer bien le mouvement du systeme durant au moins une minute, et noter vos remarques.

3. Expliquer brievement pourquoi le systeme ne poursuit pas « indéfiniment » son mouvement en
descendant et en montrant.

4. Dans quel cas précis 1’énergie totale du systéme est une fonction conservative.

Comment serai dans ce cas le mouvement du systéme par rapport au cas de la question
précédente ?
5. Mesurer avec le pied-a-coulisse, le diametre du support et en déduire :

(r+ Ar) mm
6. Evaluer la hauteur h qui sépare les deux positions limites du systeme :
(h+ Ah)em

7. Demander le tachymeétre numérique de votre enseignant (Il vous expliquera comment 1’ utiliser).
Mettre le systéme a sa hauteur maximale ; le lacher sans vitesse initiale puis, essayer au méme
temps de mesurer a 1’aide du tachymetre la vitesse angulaire.

Prendre 3 mesures de N. On donne % =2%.

N1 (tr/min) N2 (tr/min) N3 (tr/min) AN (tr/min)

Prendre la plus grande valeur de N et déduire la vitesse angulaire maximale en utilisant la
. . Lt 27N , : . .
relation de proportionnalité ¢, :4L60' Déterminer son incertitude.
X
8. A l’aide de la relation (5) vérifier que le coefficient de Mr? est sans dimension, puis donner

A
I’expression de TJ et calculer (J irAJ).

9. Calculer théoriqguement J en supposant que la roue du systéme est approximativement identique
a un disque vide homogéne de rayon R et de masse Mp=10Ms avec Mp et Ms sont
respectivement la masse du disque et la masse du support du rayon r du méme systeme.

J. =M R? +% M¢r®. Endéduire Afcn.

10. Comparer J:» avec Jex calculée en tenant compte des incertitudes. Conclusion.

Données :
MD = Ms= R= r =
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