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GENERALITES  

  

OBJECTIF DES TRAVAUX PRATIQUES  

La physique est la science qui étudie les propriétés générales de la matière et permet 

d'établir de nombreuses lois qui servent  très souvent de fondement aux autres sciences. 

         Ces lois physiques doivent être vérifiées par des expériences reproductibles  en vue 

d'illustrer  certains phénomènes physiques traités dans le cours et  déterminer les grandeurs 

physiques avec une  bonne  précision. C'est le but essentiel des travaux  pratiques.  

Ces travaux  permettent aussi d'apprendre à manipuler,  tracer des courbes, interpréter les 

résultats obtenus et en tirer des conclusions. 

L'étude expérimentale d’un phénomène physique nécessite l'acquisition d'un ensemble 

d'appareils pour  réaliser des montages,  faire des mesures en tenant compte de toutes les erreurs 

commises et comparer ensuite les résultats obtenus  aux valeurs théoriques.  

 

1 - MESURES ET INCERTITUDES 

 

Lors d'une mesure, il est impossible de trouver la valeur exacte d’une grandeur physique 

x. Mesurer cette grandeur, revient non seulement à chercher sa valeur mais à lui attribuer aussi 

une autre valeur appelée incertitude absolue pour pouvoir qualifier la qualité de la mesure. Cette 

incertitude est associée aux erreurs de mesures dues à l'instrument de mesure, à l’opérateur et 

à la variabilité de la grandeur mesurée.  

 Notions d’erreur et d’incertitude 

 L’erreur sur une mesure est la différence entre la valeur obtenue (Valeur mesurée) et 

la valeur réelle (valeur exacte). 

Erreur = valeur mesurée − valeur exacte. 

L’erreur est une grandeur algébrique, positive si la mesure est par excès, négative si la mesure 

est par défaut. 

  L’incertitude de mesure est l'intervalle au sein duquel se trouve probablement la valeur 

vraie. Elle caractérise la dispersion des valeurs qui peuvent être attribuées à la grandeur 

mesurée. Elle est positive, de même nature que x  et notée ∆x.  

 Le résultat de la mesure de x est  notée donc : x = (x0 ± ∆x).  
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 Types d'erreurs de mesures 

On distingue deux types d’erreurs : 

 L’erreur systématique  

Lors d’une mesure unique, la précision de l’appareil de mesure, la façon dont il est utilisé et la 

qualité de la mesure, sont à prendre en compte : l’erreur correspondante est dite systématique 

ou de biais. Par exemple, un appareil peut être mal étalonné : le zéro peut être mal réglé, 

l’échelle peut être mal graduée, etc. L'erreur systématique est donc une erreur de méthode (due 

au matériel, ou à l’expérimentateur). Elle est la plus difficile à détecter et nécessite une vigilance 

constante. 

L’évaluation de celle-ci consiste à considérer alors toutes les erreurs commises.  

 L’erreur de mesure accidentelle  

Lorsqu’un même opérateur répète plusieurs fois, dans les mêmes conditions, la mesure d’une 

même grandeur, les résultats peuvent être différents. On parle alors d’erreur de mesure 

accidentelle .Elle est due essentiellement aux réflexes de l'opérateur. 

 

 Types d'incertitudes  

 Incertitude systématique  

L’incertitude systématique est associée aux erreurs systématiques. 

Incertitude systématique  = la plus petite grandeur mesurée avec un instrument. 

 Incertitude accidentelle   

Cette incertitude est due à l'opérateur, lorsqu’il fait n mesures (g1, g2,..., gn) d’une même 

grandeur physique G dans les mêmes conditions. Pour la calculer, on prend la valeur moyenne:   

gm =valeur moyenne de g =  g1 + g2 + g3…../n  = ∑gi  /n   avec i=1,2…….n. Plus le nombre de 

mesures « n » est grand, plus gm est proche de go. 

L’incertitude accidentelle est la valeur la plus grande entre les écarts m ig g . 

∆g = sup m ig g     avec i =1,2…….n. 

 Cas où 2 mesures g1 et g2 sont effectuées:  

1 2

2

g g
g


   
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 Incertitude absolue  

L'incertitude absolue ∆x est l'erreur maximale que l'on peut  commettre dans l'évaluation de x. 

L’incertitude absolue est la somme des deux incertitudes précédentes :  

 

∆g = ∆g systématique + ∆g accidentelle. 
 

C’est une quantité toujours positive et de même unité que g. La valeur exacte de g est telle que :  

gmoyen - ∆g ≤  g  ≤  gmoyen + ∆g. 

Avec : ∆g  << g, ∆g  ≥  0   

∆g = (∆g) systématique  si une seule mesure est effectuée. 

 Si la grandeur G est affectée de plusieurs incertitudes  (∆g)1 ,( ∆g)2….. l'incertitude absolue 

totale est: (∆g) Totale = (∆g)1 +( ∆g)2+….. 

 Si dans une série de mesures, une valeur est trop écartée de la moyenne, elle doit être 

refaite.  

 Le résultat d’une mesure g doit être toujours accompagné de son incertitude absolue ∆g 

et de son unité exprimée, en général, dans le système international [S.I].  

  .mg g g Unité    

 Il faut donner la valeur de l’incertitude absolue avec un seul chiffre significatif.

  

      *Présentation de résultats: 

Lors de la présentation finale d'un résultat il est important d'accorder le nombre de chiffres 

significatif à la précision déterminée. 

Si une incertitude n'est pas donnée, le niveau du dernier chiffre significatif est admis comme 

ordre de grandeur de l'incertitude. 

 Exemple :   

On veut mesurer le temps t nécessaire pour un tour à l'aide d'un chronomètre.  

L’incertitude systématique dans ce cas est : 0,01t s   (appelée incertitude de lecture).  

Pour déterminer l’incertitude accidentelle, on fait trois mesures successives de t. 

On trouve alors les valeurs suivantes : t1 = 6,24 s, t2= 6,34 s et t3 = 6,29 s. 

La valeur moyenne de 1 2 3 6,29
3

m

t t t
t s

 
  . 

∆tacc = sup |tm – ti| = 0,05s 

Totale acct t t         AN :    ∆tTotal = 0,06 s d’où t = (6,29 ± 0,06) s. 
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      *Comparaison de deux résultats 

Comparer deux résultats  (g1   ∆g1), (g2   ∆g2) revient à vérifier l'inégalité : 

Théorème de comparaison :     1 2 1 2
g g g g       

Qui traduit le chevauchement des intervalles [g1 - ∆g1, g1 + ∆g1]  et [g2 - ∆g2, g2 + ∆g2]. 

Conclusion : Si l'inégalité est vérifiée,  on peut dire que la différence entre g1 et g2 n'a pas de 

signification physique. 

 Incertitude relative  

On appelle incertitude relative (ou précision) sur G, la quantité ∆g /g. Elle est positive, 

sans unité et souvent exprimée en pourcentage (%). Elle renseigne mieux que l’incertitude 

absolue sur le degré d’exactitude d’une mesure. Une mesure est d’autant plus précise que son 

incertitude relative est faible.  

Exemple:   

Une masse est mesurée avec une précision de  5 % cela signifie que  ∆m/m = 2 %.    

Si : m=500g  ∆m = m×2%= 10g. D’où m = (500 ±10) g.  

Comparaison de deux méthodes  

La grandeur G est mesurée par deux méthodes différentes qui donnent les résultats  1 2g g 

et  2 2g g  .  

La mesure la plus précise correspond à celle dont l'incertitude relative est la plus faible. Si : 

1 2

1 2

g g

g g

 
 : la première méthode est la plus précise.  

Calcul d’incertitude 

En général, la détermination d’une grandeur G s’effectue par la mesure d’autres grandeurs 

physiques intermédiaires X, Y, Z, ...  

La grandeur G est alors définie par sa valeur g telle que : g = f(x, y, z, ...).  

Connaissant les incertitudes Δx, Δy, Δz, …des mesures x, y, z, …, on détermine alors 

l'incertitude absolue  ∆g en fonction de Δx, Δy, Δz, … en faisant un calcul d'incertitudes.   
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1
ère

 étape : Calcul des différentielles partielles. 

2
ème

 étape : Regroupement des coefficients de dx, dy, dz.. 

3
ème

 étape : Majoration physique. 

 Cas simples d'une seule variable : G= f(x)  

On calcule la différentielle de g soit : dg = f '(x) dx. 

Par  majoration physique, on obtient: '( ) .g f x x   .    

Cas de plusieurs variables indépendantes: g = f ( x,y,z….). 

Pour faire ce calcul, on suit les étapes suivantes :  

- On calcule séparément les dérivées partielles puis dg totale. 

- On fait la majoration physique pour calculer  ∆g  (d est remplacé par  ∆ et les coefficients  

de dx, dy,…sont pris en valeur absolue).    

'( ) . '(y) . '(z) . .....g f x x f y f z         

 

 Cas de plusieurs variables liées   

 Premier cas : la fonction est donnée sous forme de sommes, différences, produits ou  

quotients. 

Exemple: 

            g (x,y,z) = 2xy + 1/y – yz3 

 

            Calcul de dg :  

            dg = 2y dx + 2x dy – 1/y2 dy - 3yz 2 dz - z3 dy. 

 

            Regroupement des coefficients  

            dg =  2y dx + (2x –  1/y 2  -  z 3) dy   - 3yz 2 dz. 

 

            Majoration physique  
 

            
3 2

2

1
2 2 3g y x x z y yz z

y

 
          

 
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 Deuxième cas 

Lorsque l’expression de g comporte seulement des produits et des quotients, on peut simplifier 

les calculs en utilisant la "méthode des logarithmes", comme dans l’exemple suivant :  

 

Exemple   : 

             g (x,y,z) =2 x 2y / x-y . 

              On passe par le Log : 

              Log (g) = Log 2 + 2Log (x) +Log (y) – Log (x-y). 

               

              On différencie le Log : 

             
( )

2 2
dg dx dy d x y dx dy dx dy

g x y x y x y x y x y


      

  
              

              

              On regroupe :  

             
2 1 2 1dg

dx dy
g x x y x x y

   
      

    
 

              

              On majore :     

             
2 1 2 1g

x y
g x x y x x y

   
        

    
                

             
2 1 2 1

g g x y
x x y x x y

    
          

      
 

            

            2- REPRESENTATION GRAPHIQUE  

 

 En physique, il est courant de passer  par une représentation graphique pour essayer de vérifier 

une loi.   

La droite étant la représentation la plus simple, on cherche à exprimer la loi à tester sous la 

forme  y =ax+b. 

Les rectangles d'incertitudes (ou barres d'erreurs) sont portés sur le graphe pour juger de la 

validité de l'interprétation.  

La représentation graphique de la fonction y = f(x) = ax + b est une droite.  
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Considérons deux points A1 (x1, y1)  et  A2 (x2, y2) de la droite D (figure ci-dessous). On appelle 

pente de cette droite, le rapport 2 1

2 1

y y
p

x x





; 

On montre que p = a = tg (α). 

 

Figure 1. Représentation graphique d'une fonction linéaire 

En mathématique, quand le repère xOy est orthonormé, la pente p = tg (α)  est un nombre 

sans unité.   

En physique, les grandeurs X et Y ont des unités. Par conséquent la pente 2 1

2 1

y y
p

x x





, a une 

unité:  
 
 

Y
p

X
   et donc p ≠ tg (α). 

Tracé de courbe   

Chaque grandeur X (ou Y) est mesurée avec une certaine incertitude. Les résultats de 

mesure (x   ∆x) et (y   ∆y)   sont en général regroupés dans un tableau : 

Pour tracer la courbe Y = f(X), on procède de la manière suivante :  

 On commence par tracer les axes des abscisses X et des ordonnées Y sur les bords d'un 

papier millimétré; les unités de X et de Y doivent être indiquées.   

 On choisit les échelles des axes de façon que la courbe occupe le maximum de surface du 

papier millimétré (la pente d’une droite obtenue à partir de ce graphe sera alors la plus 

précise).  

 On place sur la courbe les points expérimentaux Ai (xi, yi). Lorsque la courbe n’est pas une 

droite, on joint ces points par des traits sans tenir compte des incertitudes.   
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 Comment traduire graphiquement les incertitudes expérimentales ?  

Lorsque la courbe est une droite, on tient compte des incertitudes.  

La mesure exacte alors de chaque point Ai (xi, yi) se trouve dans l’intervalle [xi -∆xi, xi + ∆xi] 

pour l’axe des abscisses, et  [yi - ∆yi, yi + ∆yi] pour l’axe des ordonnées (Voir figure 2). 

Ceci permet de tracer un rectangle d’incertitude de cotés 2 ∆xi  et 2∆yi, centré en Ai (xi, yi). 

Autour de chaque point expérimental on trace un rectangle d’incertitude.  

 

 

Figure 2: Représentation graphique des incertitudes expérimentales 

   
 

Remarque : Il se peut que ce rectangle se réduit à  un segment ou un point si l'une ou les deux  

incertitudes sont  négligeables ou l'échelle choisie n'est pas bonne.  

   On trace ensuite deux droites limites D1 et D2 ayant respectivement la pente minimale P1 et 

la pente maximale P2.  

D1 et D2 doivent passer par le maximum de rectangles d’incertitudes (exemple ci-dessous). Ceci 

permet de calculer la pente moyenne P moyenne et  son incertitude ∆P moyenne  comme suit :            

 

1 2

2
moyenne

P P
P


     Et     1 2

2
moyenne

P P
P


   

 

L’échelle ainsi que le titre de la courbe doivent être mentionnés sur le papier millimétré. Les 

unités indiquées sur les  deux axes sont  les unités réelles des grandeurs X et Y.  
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Figure 3: Représentation graphique de la fonction Y = f(X) avec rectangles d'incertitude. 

 

            3 - UTILISATION DU TACHYMETRE 

Présentation  

Le tachymètre numérique portable est un instrument compact qui permet de mesurer la vitesse 

d'un système  en rotation.  Le principe de fonctionnement (méthode optique), consiste à  projeter 

un faisceau lumineux sur une ou plusieurs bandes minces collées à ce système.   

 

Ces bandes reflètent la lumière vers le tachymètre ce qui conduit à la détermination de la vitesse 

de rotation. Le résultat apparaît automatiquement sur l'écran LCD.   

 

La distance entre le tachymètre et le système en rotation peut aller jusqu'à 600mm. La valeur 

mesurée est exprimée en tour par minute (tr/mn) avec une précision ∆N/N souvent égale à 2%.  

 

En pratique, les valeurs min, max. et moyenne ainsi que la dernière valeur mesurée, sont 

enregistrées (bouton menu). Voir figure 4.  

 

 

 

 

 



 

 

10 

 

 

Figure 4 : Le tachymètre numérique portable 

 

Les différentes parties d’un tachymètre sont:  

1 : Ecran d'affichage.  

2 : Bouton de visualisation : dernière valeur.  Valeurs  min, max. 

3 : Bouton d’alimentation et initialisations à la valeur 0.  

 

4 - ORGANISATION DES TP ET INSTRUCTIONS   

 

 Tout étudiant ayant fait un changement de filière ou nouveau inscrit (et dont le nom ne 

figure pas sur les listes affichées au Laboratoire  de TP de physique), doivent contacter 

immédiatement le responsable de TP et apporter une photocopie de l'attestation 

d’inscription.  

 Les étudiants redoublants ayant une note de TP supérieure ou égale à 10/20 sont dispensés. 

Seuls les étudiants ayant déposé une demande auprès du responsable peuvent passer les TP. 

 La présence aux travaux pratiques est obligatoire et contrôlée.    

 Toute absence non justifiée ou un compte rendu non remis entraînent la  note 0/20.  

 L’absence non justifiée au 2/3 de TP ne permet pas la validation du module.  

 Les notes du contrôle de TP de physique sont affichées au Laboratoire. L’étudiant peut 

consulter sa copie sur demande déposée  au Laboratoire.  

 Dans la salle  de T. P,  ne jamais alimenter un montage (branchement au secteur) : appeler 

avant  l'enseignant pour la vérification du montage.  

 Il est strictement interdit de déplacer le matériel  (fils de connexion, voltmètre..), en cas de 

panne appeler l'enseignant.  

 Avant de partir : ranger le matériel, démonter les montages et éteindre les appareils 

électriques.  
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 Chaque manipulation doit être préparée auparavant. Le travail dans la salle de T.P doit être 

entièrement consacré à la réalisation des montages, aux mesures, au traçage des courbes et 

aux interprétations.   

 Le compte rendu comprend :  

 But : c’est l’objectif qu’il faut atteindre avec les mesures effectués.  

 Partie pratique  (manipulation) : concerne les mesures réalisées dans la salle 

(regroupés dans des tableaux), les calculs, les interprétations et les 

conclusions. Les questions théoriques (calcul d’incertitudes, …) doivent être 

traitées avant de venir en salle de T. P.  

 A la fin de chaque séance, un compte-rendu regroupant tous les résultats de la manipulation 

réalisée, est  remis. 
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ANNEXE:  UNITES DU SYSTEME INTERNATIONAL (SI)  

 

Unités de base du système SI. 

 

Grandeur  Unité  Symbole  Dimension  

Longueur  Mètre  m  L  

Masse  Kilogramme  kg  M  

Temps  Seconde  s  T  

Intensité de courant  Ampère  A  I  

 

     Unités dérivées. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Grandeur  Unité  Symbole  Dimension  « Correspondance »  

Charge électrique  Coulomb  C  Q = IT  A.s = C  

Energie, travail   Joule  J  ML2/T2  kg.m2.s-2 = J  

Fréquence  Hertz  Hz  1/T  s-1 = Hz  

Puissance   Watt  W  P= ML2/T3   kg.m2.s-3 = W  

    Résistance électrique Ohm Ω P /I2 = U / I kg.m2.s-3.A-2 =  Ω  

Tension électrique Volt V M.L 2.T-3.I-1
 kg.m2.s-3.A-1 = V 

Grandeur  Unité  Symbole  

Angle  Radian  rad  

Angle solide  Stéradian  sr  

Accélération  Mètre par seconde carrée   m.s-2  

Accélération angulaire Radian par seconde carrée rad.s-2 

Vitesse  Mètre par seconde  m.s-1  

Vitesse angulaire  Radian par seconde  rad.s-1  
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TP1: ETUDE D'UN MOUVEMENT DE ROTATION 
 

I- BUT  

 Étude d’un mouvement de rotation uniformément accéléré autour d’un axe fixe.  

 Calcul d’un moment d’inertie.  

 

II- PARTIE THÉORIQUE 

II – 1 Moment d’inertie :  

Soit I, le moment d’inertie du système par rapport à l’axe (∆) :  

I = Io+2I  

♦  Io = moment d’inertie du système à vide, par rapport à l’axe (∆), sans les masses M.  

♦  Il = moment d’inertie de chacune des masses M par rapport à (∆).  

Grâce au théorème d’Huygens, Il  s’écrit :  

𝐼1 = 𝑀𝑑2 + 𝐼𝛥′  

♦  Md2
 = moment d’inertie de M, confondue en son c.d.g, par rapport à (∆).  

 

♦  I∆’= moment d’inertie de M par rapport 

à (∆’) parallèle à (∆) en passant par le 

c.d.g de M :  

2 22

1 2
'

4 3 4

D DM
I

 
  

 
  (1) 

 
Avec : 

 

 = longueur du cylindre M. 

D1 : Son diamètre intérieur. 

D2 : Son diamètre extérieur. 

 

En définitive nous avons :  

𝐼 = 𝐼𝑜 + 2𝑀𝑑2 + 2𝐼𝛥′    (2) 
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II – 2  Loi du mouvement : 

C’est une relation entre θ (abscisse angulaire) et le temps t.  

Dans notre cas, on démontre que cette relation peut s’écrire :  

2

1 2

1

2
t k t k 



    

* 


= Accélération angulaire du mouvement.  

* k1 et k2 sont 2 constantes déterminées par les conditions initiales.  

Si à l’instant t = 0 : θ= 0 (abscisse initial nul) et 0
d

dt


  (vitesse initiale nulle), alors k1=k2=0 et 

l’équation du mouvement devient :  

21

2
t 



 (3)  

L’expression de 


 est donnée par la formule :  

2

mgr

I mr






(4) (g=accélération de la pesanteur) 

Pour une masse m donnée, 


 est constante et le mouvement est uniformément accéléré.  

 

III- DISPOSITIF EXPERIMENTAL. 

Le dispositif expérimental est composé de : 

- Un tambour, de rayon r,  monté sur un roulement à billes et supporté par une tige verticale 

matérialisant l’axe de rotation (∆). 

- Une tige horizontale, solidaire du tambour, portant 2 masses identiques M disposées à égale 

distance d=25cm de l’axe.  

-  Une masse m portée par un fil passant sur une poulie.  

- Un chronomètre manuel pour mesurer le temps.   

a) 

 

 
 

b) 

 

Figure 5 : a) Dispositif expérimental, b) Schéma représentatif 
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IV- MANIPULATION   

 
 

Nous allons étudier expérimentalement le mouvement pour calculer 


.   

Ensuite, d’après la formule (4), nous allons déterminer le moment d’inertie Io.  

IV – 1  Détermination de 


 : 

a) Placer les deux masses M à la distance d=25 cm de part et d’autre de la tige horizontale.  

Dans toutes les expériences, le mouvement débutera à l’instant t=0 à partir du repos. L’angle θ 

sera mesuré en nombre entier de tours (N tours). 

 

N(tours)  t1 (s)  t2 (s)  tm (s)  Δtm (s)  t (s) Δt(s)  t2
 (s2)  Δt2

 (s2)  N/t2 (tr/s2)  
 

1 
 

         

 

2 
 

         

 

3 
 

         

 

4 
 

         

 

 Pour chaque valeur de N, le temps est mesuré 2 fois : t1 et t2 ; t est la moyenne et ∆t l’incertitude: 
 

mt t t     

 

1 2

2
m

t t
t


   

 

Avec : t est la précision du chronomètre = 0,02 s. 

b) Représenter N = f(t2) sur un papier millimétré en notant les rectangles d’incertitudes. Nature 

du phénomène ? Conclusion ?  

c) Déterminer les pentes P1 et P2 et en déduire l’accélération angulaire  
 

  . ( 2 N  ). 

 

 IV – 2  Détermination de I0 : 

 

IV-2-a. Simplification de l’équation (4)  

a) A l’aide de la balance et du pied à coulisse, déterminer les grandeurs suivantes avec leurs 

incertitudes : M, m, r, l, D1 et D2. 
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b) Faire le calcul de mr2 et 2 I∆’ (Sans incertitudes). 

c) Calculer l’incertitude sur 2Md2 : ∆ (2Md2).  

d) En déduire qu’on peut négliger mr2 et 2 I∆’.  Ainsi (4) s’écrit :  

                                                                 
2

0 2

mgr

I Md






 (5)  

   IV-2-b.  Calcul de  Io± ∆Io  

a)  A partir de (5), calculer l’expression de Io et en déduire celle de ∆Io.  

b)  Application numérique.  
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TP2 : ETUDE DU GYROSCOPE 
 
 

 

I- BUT   
  

Le but de la manipulation est d’étudier le mouvement, autour d’un point fixe 0, d’un corps solide 

dont le moment cinétique est de grandeur constante et de direction invariablement liée au solide.  

 

II- PARTIE THEORIQUE  
 

1 – Description du Gyroscope (Voir figure 7) 

Il est constitué d’une roue de faible poids, ayant un moment d’inertie assez grand. Le moyen de 

cette roue renferme un roulement à bille. Une tige T1 peut coulisser à l’intérieur du moyeu et peut 

être fixée à celui-ci par simple serrage d’une vis.  

On désignera par gyroscope l’ensemble roue-tige T1.  

La tige  T1  présente à une de ses extrémités un évidement E qui servira de repère. La pointe de 

l’autre extrémité tronconique de la tige  T1  désigne le point fixe O, qui est aussi le point d’appui de 

gyroscope sur un support fixe.  

L’axe de la roue, confondu avec l’axe de la tige  T1, désignera par la suite l’axe OZ du référentiel 

lié au gyroscope.  

Le centre de gravité du gyroscope se trouve exactement en O lorsque le repère E de la tige coïncide 

avec l’extrémité A du moyeu. Lorsque le repère n’est pas dans cette position, le centre de gravité se 

trouve sur l’axe OZ ailleurs qu’en 0.  

 

Le gyroscope est en équilibre statique par rapport à 0 lorsque son centre de gravité est en 0. Dans 

cette position, lors du mouvement (rotation de la roue) la réaction en 0 est indépendante de la vitesse 

de rotation de la roue de son axe, on dira que le gyroscope est dynamiquement équilibré par rapport 

à l’axe OZ.  

L’étude comportera une analyse qualitative du comportement du gyroscope équilibré (centre de 

gravité en O) et une analyse quantitative du mouvement dit  de Lagrange lorsque le gyroscope est 

déséquilibré (Centre de gravité sur OZ ailleurs qu’en O).  

 

2– Rappels théoriques et cinématique du gyroscope   

  

a) Angles d’Euler  

Les repères choisis sont trirectangles directs :  

OX1Y1Z1 est fixé au laboratoire. OZ1 vertical ascendant. 

OXYZ est lié au gyroscope. OZ axe de rotation de la roue.  

Les plans OXY et OX1Y1  se coupent suivant l’axe OU.  
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La position instantanée de la roue tournante est déterminée par les angles d’Euler.  

1
1 1 1 1

1 autour de OZ  autour de OU  autour de OZ

ez eu ez
OX Y Z OUVZ OUWZ OXYZ

Rotation Rotation Rotation

 
  



 

  1,OX OU   Angle de la précession 

 1,OZ OZ   Angle de la rotation 

 ,OU OX  Angle de la rotation propre 

La rotation instantanée 𝛺 de la roue est la composition des rotations 𝜓´, 𝜃´, 𝜑´ :  

1ez eu ez  
  

     

b) Moment cinétique   

Le moment cinétique, en O de la roue par rapport au repère fixe F : OX1Y1Z1  s’écrit :  

0 RL I   (1)  

IR  désigne le moment d’inertie de la roue par rapport à son axe OZ. Dans les mouvements étudiés 

par la suite, θ sera pratiquement constante, soit donc 


=0 et 


sera à peu près 10 fois plus grande 

que 


. (1) s’écrit alors :  

0 RL I ez


 (2) 

c) Dynamique du gyroscope et Théorème du moment cinétique.  

Le moment de rotation dynamique est régi  par l’équation suivante :  

 

0
0 ( )

d L
M F

dt
 (3)  

Ou  0L  et sa dérivé par rapport au temps doivent être prises dans le repère fixe F : OX1Y1Z1.   

 est le moment en 0 des forces extérieures. Dans le cadre de la manipulation la force qui 

intervient est due à la masse du gyroscope. Elle est dirigée suivant 𝑒⃗ 𝑧1, son point d’application est 

G. Centre de gravité du gyroscope. Elle s’écrit :  

   0 1M (F) OGez M m g ez     

M est la masse de la roue, m la masse de la tige T1. OG=d. 

Soit :                                              0 1M (F) d M m g ez ez   (4) 

En comparant (2) à (4) on voit que 0M (F)  est perpendiculaire à 0L  soit donc : 0 0.M (F) 0L   (4 bis).  
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En faisant le changement d’axe et en prenant le repère RS mobile M : OUWZ animé de la rotation 

1ez eu 
 

     par rapport au repère fixe F : OX1Y1Z1. On a :   

0 0
0 0M (F)

Rs
F Rs

d L d L
L

dt dt
    (5) 

 

Compte tenu de (4 bis), si on multiplie scalairement (5) par 0
F

L , On obtient : 

0
0 . 0

F
Rs

d L
L

dt
  

Qui a pour solution 
0

0

Rs

d L

dt
  soit 0 tan

Rs
L Cons te  

L’équation (5) se réduit à :  

0 0M (F)
Rs

L   (5 bis) 

Tenant compte de : 00 sinR
Rs

L I eu    
  

     et de 

     0 1M (F) sind M m g ez ez d M m g eu     . L’équation (5bis) donne : 

 RI d M m g 
 

   

Soit :                                                    
 

R

d M m g

I
 
  

 (6) 

Si d = OG+0 (centre de gravité en 0) ⟹ 0


 . Donc la roue tourne autour de son axe OZ  (Vitesse 




). L’axe OZ est fixe par rapport à l’axe OZ1.   Si d = OG ≠0, l’axe OZ décrit un cône d’axe OZ1 

de demi-ouverture𝜃.  

Le mouvement est appelé précession conique de vitesse 


. Ainsi  la pesanteur n’agit pas pour 

augmenter  , c’est le paradoxe de l’effet gyroscopique.  

Comme l’indique l’expression (6), l’étude nécessite la connaissance du moment d’inertie IR de la 

roue et la distance d.  

a) Pour déterminer le moment d’inertie IR de la roue par rapport à son axe, on réalise un pendule 

pesant comme l’indique la figure 6, en utilisant une tige T2, un système solidaire de la table et une 

masse m1 qu’on accroche à la roue.  
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Figure 6 : Schéma du pendule pesant réalisé avec la roue. 

 

Soient : G1 centre de gravité de la masse m1, A distance de G1 à l’axe de la roue et Im1  moment 

d’inertie de la masse m1 par rapport à l’axe ∆. Le moment d’inertie total IT  de l’ensemble roue-

masse m1 par rapport à l’axe de la roue s’écrit :   

2

m1 1IT RI I m A   (7) 

La quantité accessible à la mesure est la période d’oscillation T du pendule.  

 

Dans le cas des faibles amplitudes T s’écrit.  

 12 /RT I m gA (8)  

Pratiquement Im est très faible et sera négligé dans  (7). On obtient alors :  
2

1 2
.

4
R

gT
I m A A



 
  

 
(9)  

b) Calcul de d : distance entre le centre de gravité G du gyroscope et le point d’appui 0. Le 

théorème du centre de gravité donne.  

 

  1

: masse   la roue. .

: masse  de la tige T

R T
M deM OG m OG

d OG
mM m

 
  

 
(10)  

Lorsque le repère de la tige T1  coïncide avec le bord du moyeu, G est en 0, donc d=0 soit :   

   . 0 . 0R TM OG m OG O  (11) 

Lorsqu’on déplace la tige T1 de x (x : distance entre le bord du moyeu et le repère de la tige T1), la 

distance entre le point 0 et le centre de gravité GT  de la tige  T1  reste la même. Par contre le point 

O s’éloigne ou s’approche (selon le sens de déplacement de T1) du centre de gravité GR de la roue. 

On a alors :   

    .

1

R TM OG O x m OG O x
d OG

mM m

M

 
   




(12) 

 

Pour les valeurs de x qui seront utilisés dans la manipulation le calcul de d donne :  
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1 1

2 2

3 3

4 3,72

2 1,85

2 1,85

x cm d cm

x cm d cm

x cm d cm

    

    

    

 

 

III - DISPOSITIF EXPERIMENTAL 
 

Le dispositif utilisé dans ce TP est composé par : Figure 7  

 Gyroscope : constitué par une roue et une tige T1 l’ensemble est déposé sur un support fixe 

posé sur la table. 

 Une tige T2, un système solidaire de la table et une masse m1 qu’on accroche à la roue pour 

réaliser un pendule pesant.  

 Un chronomètre pour mesurer :  

▪ La période T. (Pendule pesant). 

▪ La vitesse de précession du gyroscope.   

 Un tachymètre pour mesurer la vitesse propre du gyroscope. 

 

 

Figure 7 : Schéma représentatif  du Gyroscope. 

 

 

IV- MANIPULATION  
  

IV -1-Détermination du moment d’inertie  IR : 

Réaliser un pendule pesant comme indiqué précédemment. T représente la durée de 10 périodes T 

(faibles amplitudes).  

 

t1(s)  t2(s)  t3(s)  tm(s)  ∆tm(s)  ∆tl(s)  ∆t(s)  T(s)  ∆T(s)  
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sup ,  t = plus petite division du chronomètre.m m it t t     

Calculer l’expression de ∆IR. Donner le résultat numérique de IR et de ∆IR. 

   
2

R 1 12
I =m A ,  A= 27,2 0,2  et m = 527 2

4

gT
A cm g



 
   

 
 

IV - 2-Vérification de la formule (6) : 

 

th R

d M m
g

I
 
   

 
 

 

 

OZ1= Repère fixe du laboratoire.  

OZ = repère lie au système.  




 =Vitesse angulaire de précession/OZ1. 




 = Vitesse angulaire de rotation / OZ. 

M= 3 Kg (masse de la roue). 

m = 0,224 kg (masse de la tige). 

 
Appeler l’enseignant pour vous montrer le mode opératoire.  

On lance la roue à la main et on écarte OZ de OZ1 d’un angle θ : OZ tourne autour de OZ1. On 

mesure, à l’aide d’un chronomètre, le temps τ (s) mis par OZ pour effectuer n tours :   

 
2

/
n

rd s







  (Prendre n=1 ou 2 tours).  

La vitesse 


est très grande. Sa mesure nécessite l’utilisation d’un tachymètre. Si N (nombre de 

tour/minute) est la mesure indiquée par cet appareil, nous avons :  

 
2

/
10 60

N
rd s








 

2-a. Indépendance de l’angle θ :  

             Prendre x = constante = +4cm. Les angles θ1, θ2 et θ3 sont quelconques :  

 

  n=1(tour)  s   1.rd s



 N(Tour/min)  1.rd s




  2 2.
ex

rd s 
 

 
 
 

 

1        

2        

3        
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Comparer les 3 valeurs de 
ex

 
  

 
 

. Conclusion ?  

 

2-b.  d variable :  

 

x(cm) d(cm) 

2

2
th

rd

s
 
    

  
   

 n=1(tour)  s

 

rd

s

  
 
 

 N(Tour/min)  1.rd s




 

2

2
ex

rd

s
 
    

  
   

 

+4  -3.72         

+2  -1.85         

-2  +1.85         

 

Comparer  
  

 
 

 théorique et expérimental. Conclusion ?   

2-c-Prendre x=0 :  

Faire coïncider le repère de la tige T1 avec le bord du moyen. Dans ce cas G est confondu avec O       

d = OG = 0. Lancer le gyroscope puis donner à la tige T1 une inclinaison θ. Que peut-on observer ? 

Expliquer le phénomène en utilisant la formule (6).  

Accrocher au niveau du repère de la tige T1 les quatre petites masses de valeur totale m’=0.2Kg.     

  
'. . '

th R

m g d

I
 
  

 
 

 Avec : d’=0,22m, Δd’=0,2cm et Δm’=2g. 

Mesure n=1(Tour) 
 s  

rd

s

  
 
 

 N(Tour/min)  1.rd s




 

2

2
ex

rd

s
 
    

  
   

 
2

2
th

rd

s
 
    

  
   

 

1        

2        

3        

 

Comparer 
th

 
  

 
 

et 
ex

 
  

 
 

. Conclusion ?   
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TP3 : ETUDE DU VOLANT DE MAXWELL 

 
I- BUT  
  

Certains solides ont des formes géométriques mal déterminées, ou, ne sont pas homogènes ; par 

conséquent, on ne peut pas déterminer leurs moments d’inertie théoriquement à partir de leurs 

paramètres géométriques et physiques.   

Le but de la manipulation est de déterminer expérimentalement :  

a) Le moment d’inertie d’un système appelé : le volant de maxwell. 

b) De vérifier que l’énergie totale d’un système mécanique est bien une fonction conservative.  

c) De calculer théoriquement le moment d’inertie J d’un système équivalent.  

II- PARTIE THEORIQUE. 
  

 Inductance propre et Résistance interne de la bobine. 

Soient R(O, x, y, z) le repère fixe lié au laboratoire et dont l’axe ox est confondu avec l’axe de 

révolution du système S lorsqu’il se trouve à sa position la plus basse, et Rs(C, x,𝑦𝑠,𝑧𝑠) le repère lié 

au système.  

- A l’instant initial, le système se situe à la hauteur z1=h.  

- A l’instant t > 0, S se situe à la hauteur z ou il a un mouvement de translation et de rotation, autour 

de son axe de révolution. S a donc deux paramètres de mouvement :  

- La cote z du centre de gravité confondu avec C.  

- L’angle d’Euler : angle de rotation propre autour de Cx :                     

sR R

ex






 

 

Puisque le support roule (ou déroule) sans glissement sur les fils, les deux mouvements de S ne sont 

pas indépendants. Ceci veut dire que S possède un seul degré de liberté. On cherchera donc la 

relation qui relie z et J.  

Soit un point M de la surface du support (Figure 9), la relation d’antisymétrie des vitesses  donne la 

vitesse de glissement de M qui doit être nulle :  

     //

 Quand S monte
0

-r ez Quand S descend

RS Rg R R R

r ez
V M V C MC V M MC












       



(1) 
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 
     

   

:  descend

( ) :  monte

z t r t h Sdz d
V C r

dt dt z t r t S





   
    



(2) 

 

Si tous les frottements sont nuls, l’énergie totale du système est conservative, d’où :  

(𝑧 = ℎ) = 𝐸(𝑧) = 𝐸(𝑧 = 0) = 𝐸𝑐(𝑧) = 𝐸𝑝(𝑧)               (3) 

Le poids est la seule force qui travail à la hauteur z. Soit 

 

 
 0;

0 0

p

p

p

E z Mgz cte
cte E z mgz

E

  
  



  

Le théorème de koening donne l’énergie cinétique à la hauteur z :  

 
2

21 1

2 2
cE z Mv J



    

Et d’après (1) :    

 
2 2

21 1

2 2
cE z Mr J 

 

    

Donc l’énergie totale du système à la hauteur  z  est :  

   
2

21

2
E z Mr J Mgz



    (4) 

Par conséquent :   

* à la hauteur z=h, l’énergie totale du système S est égale à son énergie potentielle (


=0).  

* à z quelconque, une partie de l’énergie potentielle du système se transforme en énergie cinétique.  

* à z=0, toute l’énergie potentielle se transforme en énergie cinétique (


 est maximum).  

         
2

2

max

1
0 0

2
p cE h E E z h E z Mgh Mr J 



          

D’où :  

2

2

2

max

2
1

gh
J Mr

r 


 
  
 
 
 

(5)  
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III- DISPOSITIF EXPERIMENTAL 
 

 
 

Figure 8 : Dispositif expérimental. 

 

Le dispositif expérimental utilisé dans ce TP est composé par : 

- Volant de MAXWELL : Constitué par un volant circulaire et un support cylindrique ou tige  

solidaire de part et d'autre du centre C du volant. Vue de face du volant fig. 9.b…. 

- Deux fils de suspension identiques parfaitement flexibles et de coefficient de torsion nul. 

- Un tachymètre pour mesurer  la vitesse de rotation du système.   

- Une règle pour mesurer  la hauteur h. 

a) 

 

b) 

 

Figure 9 : a) Schéma représentatif du matériel, b) Vue de face du volant 

 
 

Figure 10 : Sens du bobinage des fils et sens du mouvement du volant 
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IV- MANIPULATION  
 

1.  Bobiner les fils de suspension du système autour de son support jusqu’à sa hauteur maximale 

h, puis lâcher le système sans vitesse initiale.  

2. Observer bien le mouvement du système durant au moins une minute, et noter vos remarques.  

3. Expliquer brièvement pourquoi le système ne poursuit pas « indéfiniment » son mouvement en 

descendant et en montrant.  

4. Dans quel cas précis l’énergie totale du système est une fonction conservative.  

    Comment serai dans ce cas le mouvement du système par rapport au cas de la question 

précédente ?  

5. Mesurer avec le pied-à-coulisse, le diamètre du support et en déduire : 
 

(r ± 𝛥r) m𝑚 
 

6. Evaluer la hauteur h qui sépare les deux positions limites du système :  

(ℎ ± 𝛥ℎ)𝑐𝑚  

7. Demander le tachymètre numérique de votre enseignant (Il vous expliquera comment l’utiliser). 

Mettre le système à sa hauteur maximale ; le lâcher sans vitesse initiale puis, essayer au même 

temps de mesurer à l’aide du tachymètre la vitesse angulaire. 

Prendre 3 mesures de N. On donne 2%
N

N


 . 

N1 (tr/min) N2 (tr/min) N3 (tr/min) ∆N (tr/min) 

    

 

Prendre la plus grande valeur de N et déduire la vitesse angulaire maximale en utilisant la 

relation de proportionnalité max

2

4 60

N






. Déterminer son incertitude.  

8.  A l’aide de la relation (5) vérifier que le coefficient de Mr2  est sans dimension, puis donner 

l’expression de 
J

J


  et calculer  J J  .  

9.  Calculer théoriquement J en supposant que la roue du système est approximativement identique 

à un disque vide homogène de rayon R et de masse MD=10MS avec MD et MS sont 

respectivement la masse  du disque et la masse du support du rayon r du même système.  

2 21

2
th D SJ M R M r  .  En déduire 𝛥𝐽𝑡ℎ.  

10. Comparer 𝐽𝑡ℎ avec 𝐽𝑒⃗𝑥 calculée en tenant compte des incertitudes. Conclusion.  

Données :  

MD =           Ms=               R =                 r   =                       


