SMC5 / Méthodes Spectroscopiques d'Analyse Evaluation 2 / Durée : 1 h 30

Document permis: Tables RMN¹H

Barême: I: 5 pts; II: 2,5 pts; III: 2 pts; IV: 2,5 pts; V: 8 pts

I- Questions de cours : répondre brièvement.

1- a- Que signifie le sigle RMN¹H?

RMN¹H : **R**ésonance **M**agnétique **N**ucléaire du **P**roton

b- Le phénomène de RMN implique-t-il le noyau et/ou les électrons de certains atomes ?

Le phénomène de RMN implique uniquement le noyau atomique.

c- Quel est le rôle du champ magnétique statique H₀?

Le champ magnétique statique H₀ a pour rôle de séparer les niveaux d'énergie relatifs aux différentes orientations du spin nucléaire.

d- Dans quelle zone du spectre électromagnétique se trouve la fréquence qui provoque le phénomène de RMN ?

Cette fréquence se situe dans le domaine des ondes radio.

e- Le couplage entre les hydrogènes -CH-CH- est appelé couplage ³J. Expliquer pourquoi?

On appelle couplage ⁿJ un couplage entre des protons séparés par n liaisons. Ici, 3 liaisons séparent les protons pouvant coupler entre eux : H-C-C-H.

2- a- Quel est le principe d'ionisation utilisé pour l'étude des structures moléculaires en spectrométrie de masse ?

Il s'agit de l'ionisation par impact électronique.

b-Quel est le rôle de la source dans un spectromètre de masse?

Le rôle de la source est de produire les ions ou les ions radicaux : les molécules subissent l'impact d'un faisceau électronique accéléré sous une grande ddp (e de très grande énergie), il y a alors formation des ions moléculaires. Ensuite, ces ions se fragmentent et les ions fragments obtenus seront acheminés vers l'analyseur.

c- Indiquer deux règles de fragmentation des molécules en spectrométrie de masse.

Choisir 2 réponses parmi 3 :

Les facteurs influençant le processus de fragmentation sont les suivants

- Les liaisons faibles se coupent plus facilement.
- Les fragments stables ont tendance à se former plus facilement.
- Les fragmentations avec réarrangement sont favorisées si la molécule possède un état transitoire à 6 centres (Ex. : Réarrangement de McLafferty).

d- A quel ion correspond le pic parent sur un spectre de masse?

Le pic parent (pic moléculaire) correspond au cation radical de masse égale à la masse moléculaire du composé étudié.

f- A quel ion correspond le pic de base sur un spectre de masse?

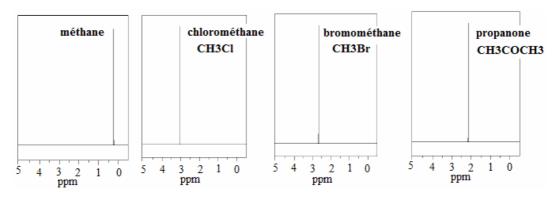
Le pic de base est le pic le plus intense. Il correspond à l'ion le plus stable.

II- Un composé $\underline{\mathbf{A}}$ contenant uniquement des atomes de C, H et Cl donne des signaux de l'ion parent à m/z = 78 et 80 dans un rapport 3:1. Proposer deux structures possibles pour $\underline{\mathbf{A}}$.

Soit le composé C_xH_yCl_n.

L'amas isotopique peut être déterminé à l'aide de la relation (a+b)ⁿ où a et b sont les intensités relatives de l'isotope le plus léger et de l'isotope le plus lourd respectivement ; n est le nombre d'atomes de cet élément.

Ici, on a Cl d'où a = 3 et b = 1. Cela correspond à $(a+b)^1$: deux pics à M et M+2 d'intensités relatives 3:1. n=1: un seul chlore dans la structure.


 35 Cl : M = 12x+y+35=78 ; cela correspond à x=3 et y=7. 37 Cl : M+2=80.

Le composé est : C_3H_7Cl .

Deux structures sont possibles : 1-chloropropane et 2-chloropropane

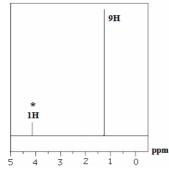
$$CH_3$$
 — CH_2 — CI_2 — CI_3 — CH — CI_3

III- Soient les spectres RMN¹H présentés ci-dessous.

1- Combien de pics le spectre RMN¹H du méthane présente-t-il ? Que peut-on en déduire sur les différents protons dans le méthane ?

Le spectre RMN¹H du méthane CH₄ présente un seul signal sous la forme d'un singulet. On peut en déduire que tous les protons du méthane sont magnétiquement équivalents.

2- Comparer les déplacements chimiques des pics du méthane, du chlorométhane, du bromométhane et de la propanone. Conclure.


Le spectre de chaque molécule présente un seul signal.

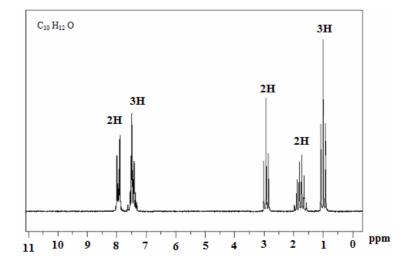
 $CH_4: \delta = 0,\!25 \; ppm < CH_3COCH_3: \delta = 2,\!15 \; ppm < CH_3Br \; ; \delta = 2,\!65 \; ppm < CH_3Cl: \delta = 3,\!1 \; ppm.$ Dans les trois molécules substituées, CH_3 est adjacent à un groupement attracteur. On constate que le déplacement chimique varie dans le même sens que l'effet électronique attracteur :

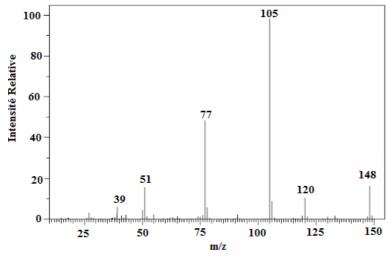
CO < Br < Cl.

Conclusion : plus l'effet électronique attracteur augmente, plus le déblindage de CH3 est important.

IV- On donne le spectre RMN¹H d'un composé $\underline{\mathbf{B}}$ de formule brute C₄H₁₀O. Analyser ce spectre et préciser la structure de $\underline{\mathbf{B}}$.

* disparaît par addition de D₂O


 $C_4H_{10}O: I = 4-5+1 = 0$


Spectre B

Multiplicité	$\delta_{ m ppm}$	Nb. H	Attribution	
Singulet	1,25	9	3 CH ₃ adjacents à un carbone ne contenant pas d'H	
			(tertiobutyle)	
Singulet	4,2	1	OH (H labile)	

Structure de B

IV- L'étude spectroscopique d'un composé \underline{C} de formule brute $C_{10}H_{12}O$ donne :

1- Analyser ces spectres. Déterminer la structure du composé étudié.

 $C_{10}H_{12}O:I=5$

Multiplicité	$\delta_{ m ppm}$	Nb. de H	Attribution
Triplet	0,95	3	CH ₃ adjacents à CH ₂
Multiplet	1,8	2	CH ₂ adjacent à plusieurs H
Triplet	2,9	2	CH ₂ adjacents à CH ₂ et à un attracteur
Massif	7,55	3	3H aromatiques
Massif	7,95	2	2H aromatiques

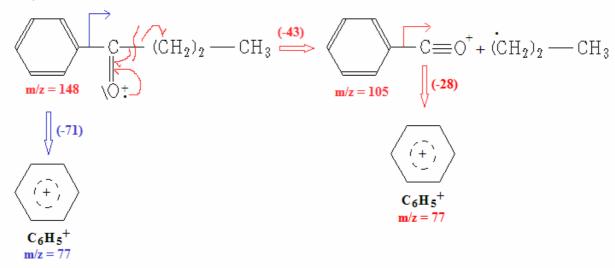
- * 5H aromatiques montrent qu'on a un benzène monosubstitué. Les signaux correspondant sont sous forme de massifs ce qui laisse penser que le groupement substituant peut donner lieu à une délocalisation des liaisons π .
- * On a aussi un radical -CH₂-CH₂-CH₃
- * C_6H_5 - C_3H_7
- * Il reste C=O

2- Donner les mécanismes de fragmentation des pics à m/z = 77, 105 et 120.

Pic moléculaire : m/z = 148Pic de base : m/z = 105

Fragmentations:

148-120 = 28: perte de C_2H_4 (éthylène) selon un réarrangement de Mc Lafferty car pour la molécule proposée, il y a un H en γ d'une insaturation.


148-105 = 43 : perte du groupement C₃H₇ selon un clivage en α de C=O

77; 51; 39: $C_6H_5^+$; $C_4H_3^+$; $C_3H_3^+$: confirment le noyau benzénique monosubstitué

Ces fragmentations sont compatibles avec la structure proposée.

Mécanismes de fragmentation :

Clivage en α de C=O:

Réarrangement de Mc Lafferty :