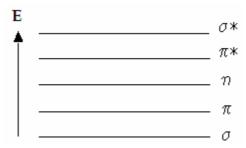
SMC5 / Méthodes Spectroscopiques d'Analyse Evaluation 1 / Durée : 1 h 30

.....

Document permis: Tables IR


Barême: I: 2 pts; II: 2 pts; III: 3 pts; IV: 4 pts; V: 3 pts; VI: 6 pts

.....

I- Quelles sont les trois règles de sélection en spectroscopie de vibration dans l'infrarouge ? Pour qu'une transition vibrationnelle dans l'IR soit permise, il existe trois règles :

- La loi de Bohr ΔE = hv doit être vérifiée.

- La vibration doit faire varier le moment dipolaire de la molécule.
- La vibration correspond à une transition entre niveaux vibrationnels de nombres quantiques v tq $\Delta v = \pm 1$, le signe + pour l'absorption.
- II- 1- Tracer dans un diagramme énergétique, et dans l'ordre croissant, les orbitales externes d'une molécule polyatomique : σ , σ^* , π , π^* , n.

2- Indiquer dans l'ordre d'énergie croissante les transitions permises entre ces orbitales.

$$\begin{array}{c|c}
\pi \to \pi^* < \sigma \to \sigma^* \\
\hline
& \sigma^* \\
\hline
& \pi^* \\
& \pi^* \\
\hline
& \pi^* \\
\hline
& \sigma \to \sigma^* \\
\hline
& \sigma \to \sigma^*
\end{array}$$

3- Dans le cas où la plus haute orbitale occupée est l'orbitale n, quelles sont les deux transitions électroniques de plus basse énergie ?

Les deux transitions électroniques de plus basse énergie sont : $n \to \pi^*$ et $n \to \sigma^*$

A	_ <i>∪</i> *
<u> </u>	_ π×
$\eta \rightarrow \sigma * \uparrow \eta \rightarrow \pi *$	- n
	- π
	_ σ

III- On remplit une cuve de 2 mm avec une solution de benzène de concentration 10^{-5} mol.L⁻¹. Le spectre UV-visible de cette solution montre une bande à la longueur d'onde 256 nm.

1- Sachant que la transmittance de l'échantillon est de 48%, calculer le coefficient d'extinction molaire du benzène à 256 nm.

On applique la loi de Beer-Lambert : A = $\log (I_0/I)$ = - $\log T$ = $\varepsilon \ell C$

A: Absorbance

I₀ : intensité de la lumière incidente I : intensité de la lumière transmise

T : transmission

ε: coefficient d'extinction molaire, L.mol.⁻¹.cm⁻¹

 ℓ : trajet optique, cm

C: concentration molaire, mol.L-1

On donne la transmittance. La transmittance est le %T. On cherche $\boldsymbol{\epsilon}$:

$$\varepsilon = \frac{-\log T}{l C}$$

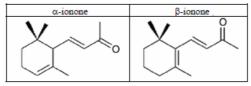
A.N.
$$\varepsilon = \frac{-\log 0.48}{0.2 \times 10^{-5}}$$

$$\varepsilon \approx 160000 \text{ L.mol.}^{-1}.\text{cm}^{-1}$$

2- Quelle sera à 256 nm l'absorbance du même échantillon placé dans une cuve de 4 mm?

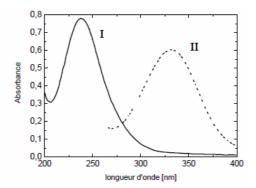
On cherche l'absorbance:

$$A = \varepsilon \ell C$$


On sait qu'à une longueur d'onde donnée, & est une constante.

A.N. A
$$\lambda = 256$$
 nm, $\varepsilon = 160000$ L.mol. ⁻¹.cm⁻¹
A = $160000 \times 0.4 \times 10^{-5}$

$$A = 0.64$$


Pour une même solution (C constante), si on double la valeur de & on double la valeur de A.

IV- L'ionone, utilisée pour la production de parfums, existe sous la forme de deux isomères : α -ionone et β -ionone :

Les bandes observées sur les spectres UV-visibles de ces deux isomères correspondent à des transitions $\pi \to \pi^*$.

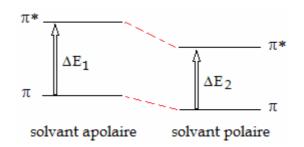
2

1- Donner les longueurs d'onde λ_{max} des bandes d'absorption.

Spectre I : λ_{max} (I) ≈ 237 nm

Spectre II : λ_{max} (II) $\approx 330 \text{ nm}$

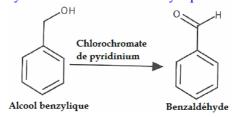
2- Faire correspondre à chaque isomère de l'ionone son spectre. Justifier.

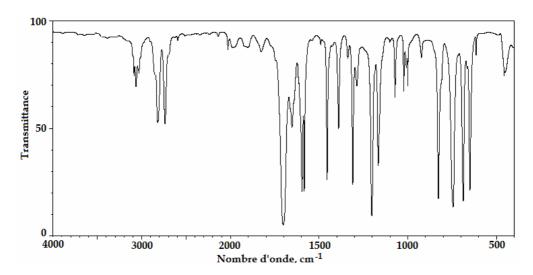

La conjugaison dans la β -ionone est plus étendue que celle dans l' α -ionone. Donc *il lui correspondra la longueur d'onde la plus élevée*.

- Le spectre I correspond à l' α -ionone (λ_{max} = 237 nm)
- Le spectre II correspond à la β -ionone ($\lambda_{max} = 330 \text{ nm}$)
- 3- Quel serait l'effet attendu sur la position de ces bandes si on passait d'un solvant non polaire à un solvant polaire ? Justifier.

Ces bandes sont dues à des transitions $\pi \to \pi^*$.

On sait que par augmentation de la polarité du solvant, la transition $\pi \to \pi^*$ subit un effet bathochrome (λ augmente).

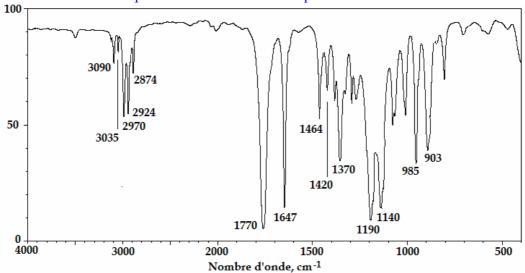

En effet,


En milieu plus polaire, l'orbitale π^* est plus stabilisée que l'orbitale π .

Donc : $\Delta E_2 < \Delta E_1$; $\lambda_2 > \lambda_1$ ($\Delta E = hc / \lambda$) : effet bathochrome.

V- On effectue la réaction d'oxydation de l'alcool benzylique en benzaldéhyde :

Un produit inconnu est obtenu en fin de réaction. Son spectre IR est réalisé. Ne sachant pas si la transformation chimique a bien eu lieu, indiquer en analysant le spectre IR si le produit obtenu est l'alcool benzylique ou le benzaldéhyde.



On étudie les fonctions chimiques de ces deux composés par IR : alcool et aldéhyde.

- ➤ Une étude préliminaire du spectre IR montre <u>l'absence</u> d'une bande large, forte et symétrique, vers 3300 cm⁻¹, caractéristique de la vibration V_{OH} associé d'un alcool.
- Le spectre du composé étudié montre la présence de
 - deux bandes v_{CH} vers 2820 et 2730 cm⁻¹ dues au <u>CH aldéhydique</u>
 - une bande forte vers 1700 cm $^{\text{-1}}$ correspondant à $v_{\text{C=O}}$ carbonyle de la fonction aldéhyde

Ces résultats indiquent que le composé obtenu est bien le produit de la réaction : le benzaldéhyde.

VI- Soit le spectre IR d'un composé de formule brute $C_5H_8O_2$. Attribuer les bandes lues et préciser une structure compatible avec ces données spectrales.

 $C_5H_8O_2: I = 5 - 4 + 1 = 2$

Région 4000 - 2000 cm⁻¹

Nombre d'onde, cm ⁻¹	Attribution
3090	ν= _{CH} (vinyle ou alcène disubstitué géminé)
3035	ν= _{CH} (vinyle ou alcène disubstitué géminé)
2970	v ^a CH3
2924	v ^a CH2
2874	v ^s ch3

Région 2000 - 400 cm⁻¹

Nombre d'onde, cm ⁻¹	Attribution
1770	$v_{C=O}$
1647	$v_{C=C}$
1464	δ^a_{CH3} et/ou δ_{CH2}
1420	$\delta_{=CH}$ (vinyle ou alcène disubstitué géminé)
1370	$\delta^{\rm s}_{ m CH3}$
1190 }	ν _{C-O} (ester) (2 bandes)
985 903	γ _{=CH} (vinyle) (2 bandes)

Le spectre IR donne les indications suivantes :

- présence de CH=CH₂ : vinyle
- présence d'une fonction ester
- présence de CH aliphatiques : CH₃ et CH₂

Avec ces données spectrales et deux degrés d'insaturation, on peut proposer comme structures :

Les valeurs des nombres d'onde des vibrations de valence des groupements C=O et C=C indiquent que ces deux groupements ne sont pas conjugués (Voir Tables des fréquences caractéristiques en IR).

Le spectre IR correspond donc à la structure \underline{A} .