
Software Engineering
Software Engineering

Software Specification
Software Life Cycle

Software Design
Software Metrics
Software Testing
Software Quality

Formal Methods for Software Engineering,
Search-based Software Engineering
Evolutionary Software Engineering

Author: Y. EL AMRANI.

foreword: this course has been taught in french from 2011 to 2014, then
in English from 2015 up to now ; all at the University Mohammed V Rabat

All Thanks go especially to the
Faculty of Sciences Of Rabat

2015 Ch.1-Y.EL AMRANI-SE INTRO- 3

Introduction Chapter 1

● In the past 50 years, starting in the NATO
conference in 1969, the term “Software
Engineering” has been coined by
FRIEDRICH LUDWIG BAUER (born in
1924: 92 years old in 2016) and emerged
as an unavoidable field of computer science
in software production.

2015 Ch.1-Y.EL AMRANI-SE INTRO- 4

Friedrich Ludwig Bauer,
NATO, 1969

2015 Ch.1-Y.EL AMRANI-SE INTRO- 5

What is Software

● Software is a computer program that can be decomposed in two parts
and sometimes three...

● ...the first part, at the heart of the software’s entity, one finds a model,
used for representing (for modeling) a problem to solve in the physical
world or in the cybernetics (science of communication) or in internet itself
(searching robot, software fighting viruses, etc.)

● … the software’s second part, is a set of many algorithms (or just one)
used to compute, optimize the solutions, calculate the problem’s
solution, learn about alternatives to the problem modeled in the first part!

● …the software’s third part is generally the biggest part in term of code,
used to manage the interaction between the user of the program and the
program’s functionalities, lying behind the complexity of its algorithms

2015 Ch.1-Y.EL AMRANI-SE INTRO- 6

What is Software Engineering

● Software Engineering is: all the methods,
techniques, environment, requirements
engineering, planning and every engineering
principles and practices that lead to sound
software development and…

2015 Ch.1-Y.EL AMRANI-SE INTRO- 7

Software versus hardware

● The frontier between software and hardware
is a moving frontier, the too of them leave in
perfect harmony: the software generally
drive the hardware, but both of them realize
computations; hardware is always much
faster at computing, however, software is a
driving force for complex computation that
have no hardware counterpart

2015 Ch.1-Y.EL AMRANI-SE INTRO- 8

Software Engineering Domains

There are many domains that can be directly or indirectly related to software
engineering, here are some of them:

1)Aspect-orientation and feature interaction
2)Engineering of distributed/parallel SW

systems
3)Engineering of embedded and real-time

software
4)Software engineering for mobile, ubiquitous

and pervasive systems
5)Software tools and development environments
6)SW Configuration management and

deployment
7)Software policy and ethics
8)Programming languages
9)AI and Knowledge based software

engineering
10)Internet and information systems

development
11)End user software engineering

1)Software requirements engineering
2)Software architecture and design
3)Patterns and frameworks
4)Software components and reuse
5)Software testing and analysis
6)Theory and formal methods
7)Computer supported cooperative work
8)Human-Computer Interaction
9)Software processes and workflows
10)Engineering secure software
11)Software dependability, safety and

reliability
12)Reverse engineering and maintenance
13)Program comprehension and visualization
14)Software economics and metrics
15)Empirical software engineering
16)End user software engineering

2015 Ch.1-Y.EL AMRANI-SE INTRO- 9

Chapter 1: Perspectives

In perspective, there are formal methods that can be
used for modeling software, verifying if before production
and… generating automatically code that would be correct by
construction.

2015 Ch.1-Y.EL AMRANI-SE INTRO- 10

Chapter 1: Conclusion

● Software engineering is large and vast domain, many
computer science activities could be viewed as a
particular sub field as to all of them relate to a specific
type of software to produce.

Chapter 2: Software Engineering
Software Production Process Life Cycles

Development Models

Chapter 2 : Software Production Life Cycles

Author : Younès El Amrani

2011-2019

2016 Ch.2-Y. El Amrani.SE L.CYCLES. 12

Introduction to chapter 2

✔ There are several life-cycle that have been
proposed to model the software life cycle, the
remaining of this chapter presents some of these

2016 Ch.2-Y. El Amrani.SE L.CYCLES. 13

للَّبات Spécification(15=المواصفات=المتط
%)

لتَّنميط ددَج=ال لَّنم Design(10=ال
%)

دق لق ممد ددَج ال لَّنم Design=ال
détaillé(10%)

Planification(5=التصميم=التخطيط

%)

 Code+Test des Unités=برمجة +تجريت الوحدات
(20%)

 +Intégration=إدماَج الوحدات+التجريَّبات
Tests(35%)

mise en oeuvre (5%)

maintenance=الصيانة

نمودَج الشلال
Le modèle en cascade

The waterfall model

2016 Ch.2-Y. El Amrani.SE L.CYCLES. 14

لتَّنميط ددَج= ال لَّنم =ال
Design

دق لق ممد ددَج ال لَّنم ال
Design détaillé / pseudo code

للَّبات =المواصفات=المتط
Spécification

 Code+Test des Unités=برمجة +تجريت الوحدات
(20%)

إدماَج الوحدات
Intégration

mise en oeuvre (5%)

maintenance=الصيانة

 V نمودَج
Modèle en V
The V model

 تجريَّبات الدماَج
Tests d'intégration / Regression Testing

تجريَّبات الوحدات
Unit Testing

Tests des Unités/modules

لتَّنميط تجريَّبات ال
Test du Design

User Validation

Traditionaly, maintenance and operation
 phase are Not represented in

the V Model

2016 Ch.2-Y. El Amrani.SE L.CYCLES. 15

Perspectives of chapter 2

✔ The future of software production does include a huge part
of software production in an automated fashion and
automated reuse.

✔ Most of the current life-cycles do not cope with software
reuse or software automated production and testing.

2016 Ch.2-Y. El Amrani.SE L.CYCLES. 16

Conclusion of Chapter 2

✔ The immaterial nature of software does necessitate
some specific improvement to traditional Life cycle,
notably, the introduction and re-introduction of
testing nearly in all software production stages!

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 17

Chapter 3: Software Effort
Estimation with COCOMO

Software Effort Estimation
with COCOMO II

author: Younès EL AMRANI

2011-2016

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 18

Introduction to chapter 3

✔ Without metrics and measure, there is no possibility
for speaking of any engineering, there is no science
at all without measurement !

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 19

COCOMO
Constructive Cost Model

● COCOMO : introduction to the effort measurementl

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 20

COCOMO’s output is Effort and
COCOMO’s Input are Lines of Code

 Where

 Effort is the Effort in staff months (homme mois)

 a and b are coefficients depending on the type of
project

 KLOC is thousands of lines of code

Effort=a∗(KLOC)b

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 21

COCOMO’s constants, a and b,
depend on the nature of the project

The constants a and b depend on the nature of the
project, COCOMO proposes a classification of projects in
three categories: (1) organic (2) semi-detached (3)
embedded.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 22

COCOMO’S MODES :
The ORGANIC MODE

A project would be said organic if it is relatively small, and
there is little innovation in it.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 23

COCOMO’S MODES :
The EMBEDDED MODE

A project would be said embedded if it is relatively large,
and there is innovation in it.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 24

COCOMO’S MODES :
The SEMI-DETACHED MODE

A project is said to be semi-detached if it is medium sized
and somewhere in between organic and embedded

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 25

Example with 100 KLOC

With a project of 100 KLOC, we have the following values for
the effort:

Organic = 2.4*pow(100,1.05)=302 man/month
Semi-Detached=3.0*pow(100,1.12)=521 man/month
Embedded=3.6*pow(100,1.2)= 904 man/month

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 26

COCOMO’s unit of measurement:
the (mythical) man-month

The Basic COCOMO formula does express the effort of
development in a classic measure: man-month.

Such unit of measure, as pointed by Frederick P.
Brooks, JR. in is book entitled The Mythical Man-Month,
would work only if Men and Months are interchangeable
commodities.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 27

COCOMO’s unit man-month: is it
appropriate for computer systems?

Obviously the unit man-month is NOT appropriate for
computers systems! Men and Month are not interchangeable
commodities in this case for two reasons:

1) on one hand, it is not obvious for any project involving

many communication within the system how to partition it
logically and consistently, and on a second hand,

2) software systems do involve many communication
between developers at ALL stages of development.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 28

COCOMO misses training of the
developers on project’s technologies

There is a necessary need for multi-channels
communication between all programmers involved in the
development of computer systems.

This communication is made of two parts:

(1) the training and

(2) intercommunication.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 29

COCOMO: no intercommunication
between developers accounted

(2) the intercommunication:

The intercommunication between programmers does
explode if we consider that each part of the project does need
to communicate with all other parts: assuming the project is
divided in N teams of programmers, then you would need
N*(N-1)/2 distinct channels of intercommunication.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 30

Less programmers, induces less
intercommunication induces less effort

In his book,Frederick P. Brooks, JR. suggests us the
following:

If you have 200-man project, with 25 managers who are
the best programmers to manage the 175 programmers, then
fire the 175 troops and put the 25 managers back to
programming !

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 31

Second COCOMO equation for
TIME of Development Estimation

(TIME OF DEVELOPMENT) TDEV = c (E)^d

TDEV is the TIME of Development

c and d are constants whose value depends on the type
of project -ORGANIC, SEMI-DETACHED, EMBEDDED-

E is the Effort, the unit is man-month.

In JAVA, the equation would be implemented:

TDEV=c*(Math.pow(Effort), d) ;

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 32

COCOMO’s constant values
for TIME of Development

TIME OF DEVELOPMENT = TDEV = c (E)^d

c and d are constants whose value depends on the type
of project, the project could be one of three: ORGANIC,
SEMI-DETACHED or EMBEDDED. Here are the values of c
and d for each case:

For ORGANIC projects: (c=2.5 ; d=0.38)

For SEMI-DETACHED projects: (c=2.5 ; d=0.35)

For Embedded projects (c=2.5 ; d=0.32)

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 33

Time of Development picking up
from the example with 100 KLOC
With a project of 100 KLOC, we have the following values for

the effort:

Organic = 2.4*pow(100,1.05)=302 man/month
TDEV=2.5*(302)^0.38 = 21,9 months

Semi-Detached=3.0*pow(100,1.12)=521 man/month
TDEV=2.5*(521)^0.35 =22,3 months

Embedded=3.6*pow(100,1.2)= 904 man/month
TDEV=2.5*(904)^0.32 = 22,1 months

You can notice that the time of development remains almost
the same, this is not by chance. For that purpose the effort has
been set in an equation in such a way that, consistently, the
duration of the project remains the same, whatever the type of
project.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 34

Effort / Time-Of-Development =
Average Staff Size

With the Effort in man-month and the Time Of Development, we
can compute the Average Staff Size on Average

SSOA=E/TDEV=[men per month] / [months] = [men or staff]

SSOA(100)=302/22=14 (Organic)
SSOA(100)=521/22=24 (semi-detached)
SSOA(100)=904/22=41 (embedded)

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 35

Productivity can also be evaluated:
= Size / Effort

If we divide the size by the Effort, we obtain the average
productivity per month:

PRODUCTIVTY = SIZE / EFFORT (#KLOC per man-month)

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 36

What After Basic COCOMO?
Here Comes in Intermediate COCOMO

 Another Factor is added, called the EFFORT ADJUSTEMENT
FACTOR abbreviated by EAF.
 The EAF is itself the product of 15 Adjustment factors, also called
COST DRIVERS.
All the adjustment factors come out from the software engineer’s mind !

 EFFORT = a * Math.pow(KLOC , b) * EAF

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 37

What are the cost drivers of
Intermediate COCOMO ?

 All the values of the cost drivers are made into a product name EAF.

EAF abbreviates EFFORT ADJUSTMENT FACTOR !
 EFFORT = a * Math.pow(KLOC , b) * EAF
 algorithm to compute EAF
 EAF=1 ;
 for(double EAF=1,int i=1:i<=15;i++)
 EAF*=costDrivers[i] ;
 return EAF ;

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 38

What are the cost drivers Categories of
Intermediate COCOMO ?

There are FOUR categories of Cost Drivers:

1) Personnel Attributes
2) Project Attributes
3) Computer Attributes
4) Product Attributes

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 39

Cost Drivers related to Personnel Attributes

There are FIVE Cost Drivers associated with Personnel Attributes

1) ACAP Analyst Capability, provide a measure of the analyst
capability

2) AEXP Application Experience: measures experience on the
application

3) PCAP Measures the Programming Capability of Programmers
4) VEXPT Measures the Virtual Machine Experience: both Software

and Hardware are meant
5) LEXP Programming Language Experience

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 40

Cost Drivers related toProject Attributes

1) MODP Measure the capability to use Modern Programming
 Practices

2) TOOL Measures/Evaluates the capability to use software tools as
of software to design the program, to automate the GUI
programming, to automate part or the whole testing stage...

3) SCED This is the Required Development Schedule, it measures
the constraint we have on the schedule (tight, large, etc.)
Note that: too large schedule impact negatively the project
cost as much as too tight schedule !

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 41

Cost Drivers related to Computer Attributes

1) TIME Measure the capability to cope/sustain Execution Time
Constraint: real time constraint, time limit to achieve
computation for divers functionalities, speed of answer...

2) STOR Measures/Evaluates the Main Storage Constraint that we
have on the project (for BIG DATA as a modern example:
how to cope with the growing size of information, what are
the constraints on the storage ?

3) TURN Measure, indicates, evaluates the Computer Turnaround
Time (Evolution, Modification, Hardware Innovation)

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 42

Cost Drivers related to Product Attributes

1) RELY Measure/evaluates/indicates the required Software
Reliability

2) DATA Measures, Evaluates and Indicates the Data Base Size
3) CPLX Measure, indicates, evaluates the product complexity.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 43

COCOMO I (1981) evolution to COCOMO II

There are Changes in cost drivers, one can thing of these changes as more
accurate naming:

Added cost drivers: DOCU, RUSE, PVOL, PLEX, LTEX, PCON, SITE
DOCU Measures suitability of the doc. with project’s life cycle
RUSE Measures additional effort to develop component for reuse
PVOL Measures Platform Volatility (it includes assemblers, compilers,

any technology volatility and major changes over project time)
PLEX Measures Platform Experience (previously TURN in Computer

Attributes)
LTEX Language and Tool Experience : LEXP and TOOL
PCON Personal Continuity : the project’s annual personnel turnover
SITE Measures Site collocation and communication support
Deleted cost drivers: VIRT, TURN, VEXP, LEXP, MODP

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 44

COCOMO Advantages 1/2

✔ COCOMO is the first model ever to provide
an estimate for software development, it
was introduced in 1981 and was
extensively adopted and used by the
software industry

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 45

COCOMO Advantages 2/2

✔ COCOMO is works quite well on similar projects after
some time of experience and it is very well documented

✔ COCOMO is quite well documented and has a long
history of use in the industry

✔ COCOMO adjustment factor provide a unique way to
adapt carefully and precisely the model to a peculiar
context of and industry: all major factors are represented!

✔ Furthermore: COCOMO has proved to have evolutionary
capabilities and that it can cope with new standards
emerging in the industry

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 46

COCOMO LIMITATIONS

✔ COCOMO must predict project size

✔ COCOMO requires adjustment factors to
be accurate and that is very demanding in
terms of expertise: it requires a very high
level of expertise of the project and of all
the stakeholders: programmers and
designers: the model cannot

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 47

Conclusion

✔ Software measurement is fundamental to
software engineering as a domain of
engineering, COCOMO has brought the
necessary breakthrough in the early eighties
to allow the field to win its badge of honor in
the battlefield of excellency, accuracy,
robustness and software quality, from
specifications to maintenance throughout
the whole process of development.

07-dec-2015 Ch.3-Y. EL AMRANI-COCOMO II- 48

Agility in Software Engineering

Agility in Software Engineering
The Agile Manifesto

Younès EL AMRANI

2011-2016

 Ch04-Y. EL AMRANI.SE AGILITY- 50

February 2001, 17 Software
Developers met at a ski resort in

Snowbird, Utah

 Ch04-Y. EL AMRANI.SE AGILITY- 51

When the 17 developer met, they
asked: what do we want?

 Ch04-Y. EL AMRANI.SE AGILITY- 52

17 years ago, what is the
perspective of the 17’s manifesto

● In February 2001, 17 senior software
developers met to discuss lightweight
development

● They published the Manifesto for
Agile Software Development to define
the approach now known as agile
software development.

● Some of the manifesto's authors
formed the Agile Alliance,

● The Agile Alliance is a nonprofit
organization that promotes
software development according
to the manifesto's principles.

The 17 said: we have come to
value:

(1) Individuals and interactions
over processes and tools

(2) Working software over
comprehensive documentation

(3) Customer collaboration over
contract negotiation

(4) Responding to change over
following a plan

 Ch04-Y. EL AMRANI.SE AGILITY- 53

What the 17 have come to value?

1.Individuals and
interactions over
processes and tools

2. Working software over
comprehensive
documentation

3. Customer collaboration
over contract negotiation

4. Responding to change
over following a plan

Individuals and interactions =
individuals co-location + individual
organized in pair programming.

• Working software = more useful
and welcome than just presenting
documents to clients

• Customer collaboration =
continuous customer or stakeholder
involvement is very important.

• Responding to change = agile
development is focused on quick
responses to change and
continuous development.

 Ch04-Y. EL AMRANI.SE AGILITY- 54

The twelve principles

1. Customer satisfaction by rapid delivery of useful software

2. Welcome changing requirements, even late in development

3. Working software is delivered frequently (weeks rather than months)

4. Working software is the principal measure of progress

5. Sustainable development, able to maintain a constant pace

6. Close, daily cooperation between business people and developers

7. Face-to-face conversation is the best form of communication (co-location)

8. Projects are built around motivated individuals, who should be trusted

9. Continuous attention to technical excellence and good design

10. Simplicity—the art of maximizing the amount of work not done—is essential

11. Self-organizing teams

12. Regular adaptation to changing circumstances

 Ch04-Y. EL AMRANI.SE AGILITY- 55

Some thirteen methods and... more

1. Agile Modeling
2. Agile Unified Process (AUP)
3. Crystal Clear
4. Crystal Methods
5. Dynamic Systems Development Method (DSDM)
6. Extreme Programming (XP)
7. Feature Driven Development (FDD)
8. Graphical System Design (GSD)
9. Kanban
10. Lean software development
11. Scrum
12. Velocity tracking
13. Software Development Rhythms

 Ch04-Y. EL AMRANI.SE AGILITY- 56

12 principles sprouted from the 4
founding principles

 Ch04-Y. EL AMRANI.SE AGILITY- 57

Agility: #1 Customer’s satisfaction
 #2 Welcoming changes

 Ch04-Y. EL AMRANI.SE AGILITY- 58

The 12 principles revisited

 Ch04-Y. EL AMRANI.SE AGILITY- 59

The four founding principles in 8
words

 Ch04-Y. EL AMRANI.SE AGILITY- 60

CMMI or Agile ?
In 2008 SEI said: take both

✔ In 2008 the Software Engineering Institute (SEI,

author of CMMI) published a technical report to make
clear that Capability Maturity Model Integration and
agile can co-exist. The report is entitled:

"CMMI or Agile: Why Not Embrace Both"

✔ CMMI Version 1.3 includes tips for implementing
Agile and CMMI.

 Ch04-Y. EL AMRANI.SE AGILITY- 61

Perspectives to Chapter 04

✔ Agile methods have been brought to existence in
2001 by 17 re-known software Engineers, almost 17
years later, some 17 agile methods have been
proposed, tested and implemented throughout the
Software industry.

 Ch04-Y. EL AMRANI.SE AGILITY- 62

Conclusion to Chapter 04

✔ The Agile methods are now unavoidable in the

Software Industry, might be one of the best proposal
made in the early twenties to bring new perspectives
to the software industry.

✔ Agile methods have indeed brought some very
efficient processes to produce Software at a right rate
and good quality. Methods like SCRUM have found
an astounding welcome throughout the industry.

✔ Agile Methods have brought nonetheless innovative
ideas to the domain, but they also mixed good ideas
together and associated inspection to high degrees
of communication, based day-to-day, between
software project’s stakeholders!

Chapter 5: The Agile Method
SCRUM

SCRUM
The Agile Method SCRUM

Younès EL AMRANI

2011-2016

 Ch05-Y. EL AMRANI.SCRUM- 64

Introduction to Chapter 5

The Agile method SCRUM is one of the most successful Agile Methods that has
been released after the Agile Manifesto in 2001.

There are grosso modo two types of methodologies:

1) Heavy methodologies following rigid product life cycles like the waterfall model,
the spiral model and the like and,

2) Agile methodologies follow a more flexible, incremental, adaptable, recurrent
and innovative product life cycles, like SCRUM, Extreme Programming (XP) DDSM
and the like

SCRUM come up with its own innovative Software Product Development Life Cycle,
bridging incremental development, code inspection and peer to peer communication
in a successful mixing successfully several software process development boosters !

.

 Ch05-Y. EL AMRANI.SCRUM- 65

SCRUM is an answer to the Agile
Software Development Manifesto

“We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right,

we value the items on the left more.”

THE SEVENTEEN SIGNATORIES ARE :

Kent Beck ; Mike Beedle ; Arie van Bennekum ; Alistair Cockburn ; Ward Cunningham ;
Martin Fowler ; James Grenning ; Jim Highsmith ; Andrew Hunt ; Ron Jeffries ; Jon Kern ;
Brian Marick ; Robert C. Martin ; Steve Mellor ; Ken Schwaber ; Jeff Sutherland ; Dave
Thomas ;

 Ch05-Y. EL AMRANI.SCRUM- 66

SCRUM Terminology Translated
in French and Arabic

Scrum flow

Scrum roles

Scrum artifacts

Scrum backlog

Scrum est le nom anglais de la Mêlée en rugby un espèce d'affrontement pour obtenir le ballon
dans un effort rapide, énergique!

Artifact: an object made by a human being, typically an item of cultural or historical interest.

Backlog:an accumulation of something, especially uncompleted work or matters that need to be
dealt with.

Shippable: deliverable ;

shipping= expedition ;

shipment: boat cargaison

 Ch05-Y. EL AMRANI.SCRUM- 67

Perspectives to Chapter 5

✔ Agile methods have been brought to existence in
2001 by 17 re-known software Engineers, almost 17
years later, some 17 agile methods have been
proposed, tested and implemented throughout the
Software industry.

 Ch05-Y. EL AMRANI.SCRUM- 68

Conclusion to Chapter 5

✔ The Scrum Methods associated two winning attitude

of Software engineering field:
inspection+communication. The daily scrum meeting
are enhancing communication and putting forward
the necessity to exchange ideas and motivation
between team member on a daily basis.

✔ The SCRUM method has also a strong emphasis on
code inspection, and more generally all product
artifacts inspection. The daily SCRUM meetings are
made to present shortly and briefly artifacts and that
is a concrete implementation of one of the most
efficient toward bugs, design flaws and specification
disambiguation !

 Ch05-Y. EL AMRANI.SCRUM- 69

Conclusion to Chapter 5

✔ The Scrum Methods associated two winning attitude

of Software engineering field:
inspection+communication. The daily scrum meeting
are enhancing communication and putting forward
the necessity to exchange ideas and motivation
between team member on a daily basis.

✔ The SCRUM method has also a strong emphasis on
code inspection, and more generally all product
artifacts inspection. The daily SCRUM meetings are
made to present shortly and briefly artifacts and that
is a concrete implementation of one of the most
efficient toward bugs, design flaws and specification
disambiguation !

13/11/19 70

Metrics for OO Design
 Whitmire [WHI97] describes nine distinct and measurable

characteristics of an OO design:

• 1. Size - Size is defined in terms of
 Volume – number of

• Database references or
• Transactions
• Database updates, etc

 Length – lines of code, number of classes,
number of instances, tec

 Functionality – using function point analysis or
use case point analysis

13/11/19 71

Metrics for OO Design
 Whitmire [WHI97] describes nine distinct and measurable

characteristics of an OO design:

• 2. Complexity
• How classes of an OO design are interrelated to

one another
• Halstead Complexity
• McCabes Cyclomatic Complexity

• 3. Coupling
• The physical connections between elements of

the OO design
 Component coupling (packages), Class

coupling, data coupling

13/11/19 72

Metrics for OO Design
 Whitmire [WHI97] describes nine distinct and measurable

characteristics of an OO design:

• 4. Sufficiency
• “the degree to which an abstraction possesses

the features required of it, or the degree to which
a design component possesses features in its
abstraction, from the point of view of the current
application.”

13/11/19 73

Metrics for OO Design
 Whitmire [WHI97] describes nine distinct and measurable

characteristics of an OO design:

• 5. Completeness
• An indirect implication about the degree to which

the abstraction or design component can be
reused
 Degree of reuse, degree of package, class,

method independence.

13/11/19 74

Metrics for OO Design-II

• 6. Cohesion
• The degree to which all operations working together to achieve a

single, well-defined purpose

• 7. Primitiveness
• Applied to both operations and classes, the degree to which an

operation is atomic

• 8. Similarity
• The degree to which two or more classes are similar in terms of

their structure, function, behavior, or purpose

• 9. Volatility
• Measures the likelihood that a change will occur

13/11/19 75

Class-Oriented
Metrics

 weighted methods per class (WMC)
 depth of the inheritance tree (DIT)
 number of children (NOC)
 coupling between object classes
 response for a class (RPC)
 lack of cohesion in methods (LCOM)

Proposed by Chidamber and Kemerer:Proposed by Chidamber and Kemerer:

13/11/19 76

Class-Oriented
Metrics

 class size (LOC)
 number of operations overridden by a

subclass
 number of operations added by a

subclass

Proposed by Lorenz and Kidd [LOR94]:Proposed by Lorenz and Kidd [LOR94]:

13/11/19 77

Class-Oriented Metrics

 Method inheritance factor
 Coupling factor
 Polymorphism factor

The MOOD Metrics SuiteThe MOOD Metrics Suite

13/11/19 78

Operation-Oriented
Metrics

 average operation size (method LOC)
 operation complexity (method)
 average number of parameters per

operation

Proposed by Lorenz and Kidd [LOR94]:Proposed by Lorenz and Kidd [LOR94]:

13/11/19 79

Component-Level Design
Metrics

 Cohesion metrics: a function of data
objects and the locus of their definition

 Coupling metrics: a function of input and
output parameters, global variables, and
modules called

 Complexity metrics: hundreds have been
proposed (e.g., cyclomatic complexity)

13/11/19 80

Code Metrics

 Halstead’s Software Science: a comprehensive
collection of metrics all predicated on the
number (count and occurrence) of operators
and operands within a component or program
• It should be noted that Halstead’s “laws” have

generated substantial controversy, and many
believe that the underlying theory has flaws.
However, experimental verification for selected
programming languages has been performed (e.g.
[FEL89]).

13/11/19 81

Metrics for Testing

 Testing effort can also be estimated using
metrics derived from Halstead measures

 Binder [BIN94] suggests a broad array of design
metrics that have a direct influence on the
“testability” of an OO system.
• Lack of cohesion in methods (LCOM).
• Percent public and protected (PAP).
• Public access to data members (PAD).
• Number of root classes (NOR).
• Fan-in (FIN).
• Number of children (NOC) and depth of the

inheritance tree (DIT).

13/11/19 82

Metrics for Design

 McCabe’s Cyclomatic Complexity
• Measures the number of linearly independent

paths within code
• Defined as number of decision points + 1

• where decision points are conditional statements
such as if/else or while

13/11/19 83

Metrics for Design

 McCabe’s Cyclomatic Complexity
lettergrade = “F”;

if (average >= 90)

 lettergrade = “A”;

else if (average >= 80)

 lettergrade = “B”;

else if (average >= 70)

 lettergrade = “C”;

else

 lettergrade = “D”;

13/11/19 84

Metrics for Design

 McCabe’s Cyclomatic Scale

13/11/19 85

Metrics for Design

 Cohesion and Coupling
• Widely accepted measures of the quality of

the design

13/11/19 86

Cohesion

 Measure of degree of interaction within a
module

 Measure of the strength of association of the
elements inside a module

 Functionality inside a module should be so
related that anyone can easily see what the
module does

 Goal is a highly cohesive module

13/11/19 87

Cohesion

 For structured design
• Deals with the cohesion of the actions in a

module (unit) to perform one and only one task
 For object-oriented methods

• Deals with the ability of a module to produce
only one output for one module

13/11/19 88

Levels of Cohesion
in Structured Design

 Functional cohesion (Good)
 Sequential cohesion
 Communicational cohesion
 Procedural cohesion
 Temporal cohesion
 Logical cohesion
 Coincidental cohesion (Bad)

13/11/19 89

Comparison of Cohesion Levels
for Structured Design

Cohesion Level Cleanliness of
Implementation

Reusability Modifiability Understand-
ability

Functional Good Good Good Good

Sequential Good Medium Good Good

Communicational Good Poor Medium Medium

Procedural Medium Poor Variable Variable

Temporal Medium Bad Medium Medium

Logical Bad Bad Bad Poor

Coincidental Poor Bad Bad Bad

13/11/19 90

Levels of Cohesion
for Object-oriented Methods

 Functional cohesion (Good)
 Sequential cohesion
 Communicational cohesion
 Iterative cohesion
 Conditional cohesion
 Coincidental cohesion (Bad)

13/11/19 91

Functional Cohesion
in Structured Design

 IN STRUCTURED DESIGN
 A module performs exactly one action or

achieves a single goal

 IN OO DESIGN
 Only one output exists for the module
 Ideal for object-oriented paradigm

13/11/19 92

Functional Cohesion
for Object-oriented Methods

public void deposit (double amount)

{

balance = balance + amount;

}

13/11/19 93

Sequential Cohesion
in Structured Design

 STRUCTURED DESIGN
 Outputs of one module serve as input data for the

next module

 OBJECT ORIENTED DESIGN
 One output is dependent on the other output
 Modifications result in changing only one instance

variable

13/11/19 94

Sequential Cohesion
for Object-oriented Methods

public double withdraw (double amount, double fee)
{
 amount = amount + fee;

if (amount < 0)
System.out.println (“Error: withdraw amount is invalid.”);

else if (amount > balance)
System.out.println (“Error: Insufficient funds.”);

else
balance = balance – amount;

return balance;
}

13/11/19 95

Communicational Cohesion
in Structured Design

 STRUCTURED DESIGN
 Various functions within a module perform

activities on the same data

 OBJECT ORIENTED DESIGN
 Two outputs are iteratively dependent on the

same input

13/11/19 96

Communicational Cohesion
for Object-oriented Methods

public void addCD (String title, String artist,
 double cost, int tracks)

{
if (count = = collection.length)
increaseSize ();

collection [count] = new CD (title, artist, cost, tracks);
totalCosts = totalCosts + cost;
count++;

}

13/11/19 97

Iterative Cohesion
for Object-oriented Methods

 Two outputs are iteratively dependent on the
same input

13/11/19 98

Iterative Cohesion
for Object-oriented Methods

void formDet (float Equations[2][3], float x[2][2],
 float y[2][2], float D[2][2])

{
for (int Row = 0; Row < 2; ++Row)

for (int Col = 0; Col < 2; ++Col)
{

x[Row][Col] = Equations[Row][Col];
y[Row][Col] = Equations[Row][Col];
D[Row][Col] = Equations[Row][Col];

}
x[0][0] = Equations[0][2];
x[1][0] = Equations[1][2];
y[0][1] = Equations[0][2];

 y[1][1] = Equations[1][2];
}

13/11/19 99

Conditional Cohesion
for Object-oriented Methods

 Two outputs are conditionally dependent on
the same input

13/11/19 100

Conditional Cohesion for Object-
oriented Methods

public boolean checkBookIn ()
{

if (this.isAvailable ())
{ //this object cannot be checked out
System.out.println (“Error: “ + callNumber +

 “ is not checked out”);
return false;

}
else
{
dueDate = null;
availability = true;
return true;

}
}

13/11/19 101

Coincidental Cohesion
for Object-oriented Methods

 Two outputs have no dependence relationship
with each other and no dependence relation
on a common input

13/11/19 102

Coincidental Cohesion
for Object-oriented Methods

public void readInput ()
{

System.out.println (“Enter name of item being purchased: “);
name = MyInput.readLine ();
System.out.println (“Enter price of item: “);
price = MyInput.readLineDouble ();
System.out.println (“Enter number of items purchased: “);
numberBought = MyInput.readLineInt ();

}

13/11/19 103

Coincidental Cohesion
for Object-oriented Methods

public String AcceptItemName ()
{

System.out.println (“Enter name of item being purchased: “);
name = MyInput.readLine ();
return name;

}

13/11/19 104

Cohesion Decision Tree for
Object-oriented Methods

Functional Cohesion
 yes

Does the module
modify fewer than 2
object variables Sequential Cohesion
 yes
no Do all modifications actually
 result in the change
 to only one variable Communicational Cohesion
 yes
 no Are the output(s) dependent
 on common input but not
 derived in a loop or a

select statement Iterative Cohesion
 yes

no Are the output(s) dependent
 on common input and are
 they used in a loop Conditional Cohesion
 yes
 no Are the output(s) dependent
 on common input and are
 they used in a selection
 no Coincidental Cohesion

13/11/19 105

Coupling

 Measure of degree of interaction between two
modules

 Measure of interdependence of modules
 Goal is to have so little coupling that changes

can be made within one module without
disrupting other modules

13/11/19 106

Levels of Coupling
for Object-oriented Methods

 No coupling (Good)
 Sequential coupling
 Computational coupling
 Conditional coupling
 Common coupling
 Content coupling (Bad)

13/11/19 107

No Coupling
for Object-oriented Methods

 No global data sharing or functional calls
between two modules

13/11/19 108

Sequential Coupling
for Object-oriented Methods

 Two modules exist where the outputs of one
module are the inputs of another

13/11/19 109

Computational Coupling
for Object-oriented Methods

 Two modules exist where one module passes
a parameter to another module and the
parameter has control or data dependence on
the output

13/11/19 110

Conditional Coupling
for Object-oriented Methods

 One module passes a parameter to another
module and the parameter has control
dependence on an output

13/11/19 111

Common Coupling
for Object-oriented Methods

 One module writes to the global data and
another module reads from the global data

13/11/19 112

Content Coupling
for Object-oriented Methods

 One module references the contents of
another module

13/11/19 113

Coupling Decision Tree
for Object-oriented Methods

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

