
Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

 Android Application Model, Processes, UI Thread
and

Handlers

Concuruncy in AndroidConcuruncy in Android

 2

Android Application PackageAndroid Application Package

 Android applications are written in Java.

 An Android application is bundled by the aapt tool into an Android packag
e (.apk)

.apk

Java
Code

Data Files

Resources
Files

• res/layout: declaration layout files
• res/drawable: intended for drawing
• res/admin: bitmaps, animations for
transitions
• res/values: externalized values

strings, colors, styles, etc
• res/xml: general XML files used at runtime
• res/raw: binary files (e.g. sound)

 3

Application ComponentsApplication Components

 Android applications do not have a single entry point (e.g. no main
() function).

 They have essential components that the system can instantiate a
nd run as needed.

 Four basic components
 Components Description

Activity UI component typically corresponding to one screen

Service Background process without UI

Broadcast Receiver Component that responds to broadcast Intents

Content Provider Component that enables applications to share data

 4

Activities

Presents a visual user interface for one focused en
deavor the user can undertake.
List of menu items a user can choose from or displa
y photographs along with their captions

Services

Doesn’t have a visual user interface, instead runs in
the background
Play background audio as the user attends to other
matters

Broadcast Receivers
Receives and reacts to broadcast announcements
An application can announce to “whoever is listening”
that a picture was taken.

Content Providers
Makes a specific set of the application’s data availa
ble to other applications.
An application uses a contact list component

Intents

A simple message passing framework. Using intents
you can broadcast messages system-wide or to a ta
rget Activity or Service.

 5

Components - ActivityComponents - Activity

 An activity is usually a single screen:
Implemented as a single class extending Activity.
Displays user interface controls (views).
Reacts on user input/events.

 An application typically consists of several screens:
Each screen is implemented by one activity.
Moving to the next screen means starting a new activity.
An activity may return a result to the previous activity.

 6

Components - ServiceComponents - Service

 A service does not have a visual user interface, but rather runs in
the background for an indefinite period time.

Example: audio player, network download, etc
 Each service extends the Service base class.
 It is possible to bind to a running service and start the service if

it's not already running.
 While connected, it is possible communicate with the service thro

ugh an interface defined in an AIDL (Android Interface Definitio
n Language).

Media Player
Activity

Service

Binder

Notification

Communication

Pause/rewind
/stop/restart

 7

Components - Broadcast ReceiversComponents - Broadcast Receivers

 A broadcast receiver is a component that receives and reacts to
broadcast announcements (Intents).
 Many broadcasts originate in system code.

E.g. announcements that the time zone has changed, that th
e battery is low, etc.

SMS

Broadcast Receiver Activity

•Get incoming calls
•Get incoming SMS

 8

Components - Broadcast ReceiversComponents - Broadcast Receivers (Cont) (Cont)

 A broadcast receiver is a component that receives and reacts to
broadcast announcements. (Cont)
 Applications can also initiate broadcasts.

E.g. to let other applications know that some data has been d
ownloaded to the device and is available for them to use.

 Applications can also initiate announcements to let other
applications know of some change in state.

 May be used to start an activity when a message arrives.

 All receivers extend the BroadcastReceiver base class.

 9

Components - Content ProvidersComponents - Content Providers

 A content provider makes a specific set of the application's data
available to other applications.
 The data can be stored in the file system, in an SQLite, or in

any other manner that makes sense.

ActivityActivity

Application
ActivityActivity

Application

ActivityActivity

Content ProviderContent Provider

ServiceService

Application

DataData SQLite XMLXML
Remote
Store

Content
Resolver
Content
Resolver

Content
Resolver
Content
Resolver

Content
Resolver
Content
Resolver

 10

Components - Content Providers (Cont)Components - Content Providers (Cont)

 Using a content provider is the only way to share data between A
ndroid applications.

 It extends the ContentProvider bas class and implements a stand
ard set of methods to allow access to a data store.
 Querying
 Delete, update, and insert data

 Applications do not call these methods directly.
 They use a ContentResolver object and call its methods

instead.
 A ContentResolver can talk to any content provider.

 Content is represented by URI and MIME type.

 11

IntentsIntents

 Intents are simple message objects each of which consists of
 Action to be performed (MAIN/VIEW/EDIT/PICK/DELETE/

DIAL/etc)
 Data to operate on (URI)

startActivity(new Intent(Intent.VIEW_ACTION, Uri.parse("http://www.fhnw.ch"));

startActivity(new Intent(Intent.VIEW_ACTION, Uri.parse("geo:47.480843,8.211293"));

startActivity(new Intent(Intent.EDIT_ACTION,Uri.parse("content://contacts/people/1
"));

 12

Android Component ModelAndroid Component Model

 An Android application is packaged in a .apk file.
 A .apk file is a collection of components.

 Components share a Linux process: by default, one process pe
r .apk file.

 .apk files are isolated and communicate with each other via In
tents or AIDL.

 Every component has a managed lifecycle.

Application
(.apk)Process

ActivityActivity ActivityActivity

ActivityActivity ActivityActivity

Content ProviderContent Provider

ServiceService ServiceService

 13

Processes and ThreadsProcesses and Threads

 Processes
 When the first of an application's components needs to be ru

n, Android starts a Linux process for it with a single thread o
f execution (Main Thread). Additional threads can be

 spawned for any process.

Each component can run in its own process.
You can arrange for components to run in other processes.
Some components share a process while others do not.
Components of different applications also can run in the sa

me process.

 Android may decide to kill a process to reclaim resources.

Application
(.apk)

Application
(.apk) ProcessProcess Main ThreadMain Thread1 1

 14

Component Lifecycles

 Application components have a lifecycle — a beginning when Andr
oid instantiates them to respond to intents through to an end wh
en the instances are destroyed.

 In between, they may sometimes be active or inactive,or, in the c
ase of activities, visible to the user or invisible.

 15

Component Lifecycles (Cont)Component Lifecycles (Cont)

 Processes and Lifecycles
 Android tries to maintain a process for as long as possible, bu

t eventually it will need to remove old processes when memor
y runs low.
To determine candidates to be killed, Android places each
process into an "importance hierarchy" based on the compon
ents running in it and the state of those components.
Processes with the lowest importance are eliminated first,
then those with the next lowest, and so on.

 16

Component Lifecycles (Cont)Component Lifecycles (Cont)

 Processes and Lifecycles (Cont)
 Five levels in the Importance Hierarchy

 17

Processes

 Android may decide to shut down a process at some point, when
memory is low and required by other processes that are more im
mediately serving the user.

 Application components running in the process are consequently d
estroyed.

 A process is restarted for those components when there's again
work for them to do.

 When deciding which processes to terminate, Android weighs the
ir relative importance to the user.

 For example, it more readily shuts down a process with activities
that are no longer visible on screen than a process with visible ac
tivities.

 The decision whether to terminate a process, therefore, depend
s on the state of the components running in that process.

 18

Processes and Threads Processes and Threads

 Threads
 Main Thread (UI Thread)

It is in charge of dispatching events to the appropriate
 user interface widgets, including drawing events.

It is also the thread in which your application interacts
 with components from the Android UI toolkit (components
 from the android.widget and android.view packages).

As such, the main thread is also sometimes called the
UI thread.

 19

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads
 Main Thread

All components are instantiated in the main thread
 (UI Thread) of the specified process.
System calls to the components are dispatched from the

main thread (UI widgets and views).
Methods that respond to those calls always run in the

main thread of the process (such as onKeyDown() to
 report user actions or a lifecycle callback method).

 20

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads
 Main/UI Thread (Exemple)

The user touches a button on the screen
The application's UI thread dispatches the touch even

t to the widget.
The widget sets its pressed state and posts an invalida

te request to the event queue.
The UI thread dequeues the request and notifies the

widget that it should redraw itself.

 21

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads
 Main Thread (UI Thread)

When an app performs intensive work in response to
 user interaction, this single thread model can yield poor
 performance unless the application is implemented properly.
Specifically, if everything is happening in the UI thread, p

erforming long operations such as network access or datab
ase queries will block the whole UI.
When the thread is blocked, no events can be
 dispatched, including drawing events.
From the user's perspective, the application appears
 to hang.

 22

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads
 If the UI thread is blocked for more than a few seconds (ab

out 5 seconds currently) the user is presented with the infam
ous "application not responding" (ANR) dialog.

The user might then decide to quit your application and
 uninstall it if they are unhappy. So,

No component should perform long or blocking operations
(e.g. I/O operations, network access, computation loops)

 23

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads (Cont)
 Solution

 Use a background thread to do the task (e.g. I/O operations, net
work access, computation loops)

 Consequence

Background thread and UI thread are running concurrently
and may have race conditions if they modify UI
simultaneously (e.g., UI switches to a different orientation)

Problem:
 The Andoid UI toolkit is not thread-safe

 24

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads
 The Andoid UI toolkit is not thread-safe. So, you must not

manipulate your UI from a worker thread—you must do all ma
nipulation to your user interface from the UI thread.

 Do not access the Android UI toolkit from outside the UI
thread

 25

Processes and Threads (Cont)Processes and Threads (Cont)

No component should perform long or blocking operations (such as
networking operations or computation loops) when called by the
system, since this will block any other components also in the
process.
 Since the user interface must always be quick to respond to user

actions, the thread that hosts an activity should not also host
time-consuming operations like network downloads.

 Anything that may not be completed quickly should be assigned
to a different thread (Spawn separate threads for long
operations (background work)).

 That's Multithreading in Android

 26

Processes and Threads (Cont)Processes and Threads (Cont)

 Threads (Cont)
 Anything that may not be completed quickly should be assigne

d to a different thread.
Threads are created in code using standard Java Thread o
bjects.

 Some convenience classes Android provides for managing thr
eads:
 Looper for running a message loop within a thread
 Handler for processing messages
 HandlerThread for providing a handy way for starting a ne
w thread that has a looper

 27

Event-driven programming

 Worker threads should communicate with the UI thread. Which
communication Model will they use.

 Some of the goals of threads can be met by using an
event-driven programming model.

 An event-driven program executes a sequence of events. The
program consists of a set of handlers for those events.

e.g., Unix signals

 The program executes sequentially (no concurrency). But the int
erleaving of handler executions is determined by the event order.

 Pure event-driven programming can simplify management of
inherently concurrent activities.

E.g., I/O, user interaction, children, client requests

 28

Android app: main event loop

 The main thread of an Android app is
called the Activity Thread.

 It receives a sequence of events and
invokes their handlers.

 Also called the “UI thread” because
it receives all User Interface events.

screen taps, clicks, swipes, etc.
All UI calls must be made by the UI
thread: the UI lib is not thread-safe.
MS-Windows apps are similar.

 The UI thread must not block!
If it blocks, then the app becomes u
nresponsive to user input: bad.

1

2

3

 29

Android event loop: a closer look

The main thread delivers UI events
and intents to Activity components.
It also delivers events (broadcast
intents) to Receiver components.
Handlers defined for these
components must not block.
The handlers execute serially in
event arrival order.
Note: Service and ContentProvider
components receive invocations from other
apps (i.e., they are servers).

These invocations run on different threads.

UI clicks
and

intents

Dispatch events by invoking
component-defined handlers.

Activity

Activity

Receiver

main
event
loop

 30

Event-driven programming
This “design pattern” is called
event-driven (event-based) programming.
In its pure form the thread never
blocks, except to wait for the next event,
whatever it is.
We can think of the program as a set
of handlers: the system upcalls a handler
to dispatch each event.
Note: here we are using the term “event” to
refer to any notification:

arriving input
asynchronous I/O completion
subscribed events
child stop/exit, “signals”, etc.

events

Dispatch events by invoking
handlers (upcalls).

 31

Android event classes: some details

Android defines a set of classes for eve
nt-driven programming in conjunction wit
h threads.
A thread may have at most one Looper
bound to a MessageQueue.
Each Looper has exactly one thread and
exactly one MessageQueue.
The Looper has an interface to register
Handlers.
There may be any number of Handlers
registered per Looper.
These classes are used for the UI
thread, but have other uses as well.

Looper

Handler

MessageQueue

Message

[These Android details are provided for completeness.]

 32

Android Handler

r Android’s mechanism to send and process
Message and Runnable objects associated
with a thread's MessageQueue.

 Each Handler instance is associated with a single thread and
that thread's message queue
A handler is bound to the thread / message queue of the
thread that creates it
from that point on, it will deliver messages and runnables to
that message queue
That thread processes msgs

 33

Android Handler

33

 34

Using Handler: Examples

 There are two main uses for a Handler

to schedule messages and runnables to be executed as som
e point in the future

postDelayed(Runnable, delayMillis)

to enqueue an action to be performed on a different thread
than your own.

post(Runnable)

 35

Android Handler

public class MyActivity extends Activity {
 [. . .]
 // Need handler for callbacks to the UI thread
 final Handler mHandler = new Handler();
 // Create runnable task to give to UI thread
 final Runnable mUpdateResultsTask = new Runnable() {
 public void run() {
 updateResultsInUi();
 }
 };
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 [. . .]
 }

 36

Android Handler

 protected void startLongRunningOperation() {
 // Fire off a thread to do some work that we shouldn't do directly in the UI thread
 Thread t = new Thread() {
 public void run() {
 mResults = doSomethingExpensive();
 mHandler.post(mUpdateResultsTask);
 }
 };
 t.start();
 }
 private void updateResultsInUi() {
 // Back in the UI thread -- update our UI elements based on the data in mResults
 [. . .]
 }
}

 37

Example: Fixing LoadingScreen

Conflict
with UI
thread

Conflict
with UI
thread

Conflict
with UI
thread

 38

Common Pattern

 Android Application Model, Processes, UI Thread
and

Handlers

Concuruncy in AndroidConcuruncy in Android

 Android Application Model, Processes, UI Thread
and

Handlers

http://moss.csc.ncsu.edu/~mueller/g1/

Supports de présentation

http://db.cs.duke.edu/courses/cps110/fall12/slides/
http://zoo.cs.yale.edu/classes/cs434/cs434-2012-fall/lectures/

Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

