
Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

Android Android ServicesServices

 2
2

 Inter-Process Communications (IPC)

 Objective: reuse existing data and services among Android
components

 3

Intents

A user activity requests a
specific action

Based on the intent, the
system picks a matching
activity for that action

Newly defined activities can use and
respond to intent data

GMail

Contacts

Home

Blogger

Chat

“Pick photo”

Blogger

Photo Gallery

Definition: Inter-process message facility for launching/
communicating with system or application activities.

 44

 Intent Definition

 Call a component from another component
 Possible to pass data between components
 Something like:

 “Android, please do that with this data”
 Reuse already installed applications
 Components: Activities, Services,

Broadcast receivers …

Intent: facility for late run-time binding
between components in the same or different
applications.

Intent: facility for late run-time binding
between components in the same or different
applications.

 5
5

 Inter-Process Communications (IPC)

Component Activity

Component Service

Component Broadcast
Receiver

startActivity()

startActivityForResult()

startService()

bindService()

broadcastIntent()

 66

 Intent Definition

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

Structure
of an Intent

 77

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

Component that should
handle the intent (i.e. the
receiver).

It is optional (implicit
intent)/ necessary
(explicit intent)

void setComponent()

 88

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

A string naming the
action to be performed.

Pre-defined, or can be
specified by the
programmer.

void setAction()

 99

Intent Components

 Predefined actions (http://developer.android.com/reference/a
ndroid/content/Intent.html)
Action Name Description
ACTION_CALL Initiate a phone call
ACTION_EDIT Display data to edit
ACTION_MAIN Start as a main entry point, does not

expect to receive data.
ACTION_PICK Pick an item from the data, returning

what was selected.
ACTION_VIEW Display the data to the user
ACTION_SEARCH Perform a search

 Defined by the programmer
 it.example.projectpackage.FILL_DATA (package prefix + name

action)

 1010

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

Data passed from the
caller to the called
Component.

Location of the data
(URI) and Type of the
data (MIME type)

void setData()

 1111

Intent Components

 Each data is specified by a name and/or type.

 name: Uniform Resource Identifier (URI)

 scheme://host:port/path

 content://com.example.project:200/folder
 content://contacts/people
 content://contacts/people/1

EXAMPLEsEXAMPLEs

 1212

Intent Components

 Each data is specified by a name and/or type.

 type: MIME (Multipurpose Internet Mail Extensions)-
type

 Composed by two parts: a type and a subtype

Image/gif image/jpeg image/png image/tiff
text/html text/plain text/javascript text/css
video/mp4 video/mpeg4 video/quicktime video/ogg
application/vnd.google-earth.kml+xml

EXAMPLEsEXAMPLEs

 1313

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

A string containing
information about the kind
of component that should
handle the Intent.

> 1 can be specified for an
Intent

void addCategory()

 1414

 Intent Components

 Category: string describing the kind of
component that should handle the intent.

Category Name Description
CATEGORY_HOME The activity displays the HOME screen.
CATEGORY_LAUNCHER The activity is listed in the top-level application

launcher, and can be displayed.

CATEGORY_PREFERENCE The activity is a preference panel.

CATEGORY_BROWSABLE The activity can be invoked by the browser to
display data referenced by a link.

 1515

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

Additional information
that should be delivered to
the handler(e.g. parameters).

Key-value pairs

void putExtras()
getExtras()

 1616

Intent Components

 We can think to an “Intent” object as a
message containing a bundle of information.
 Information of interests for the receiver (e.g.

data)
 Information of interests for the Android system

(e.g. category).
Component NameComponent Name

Action NameAction Name

DataData

CategoryCategory

ExtraExtra FlagsFlags

Additional information
that instructs Android how
to launch an activity, and
how to treat it after executed.

 1717

Intent types

INTENT TYPESINTENT TYPES

EXPLICITEXPLICIT IMPLICITIMPLICIT

The target receiver is specified
through the Component Name

Used to launch specific Activities
or services

The target receiver is specified
by data type/names.

The system chooses the receiver
that matches the request.

 18

Explicit Intent

18

Yelp Map
App

class: MapActivity

To: MapActivity.class

Only the specified activity receives this message

http://developer.android.com/training/basics/firstapp/starting-activity.html

 1919

Intent types: Explicit Intents

Explicit Intent: Specify the activity that will
handle the intent.

Intent intent=new Intent(this, SecondActivity.class);
startActivity(intent);

Intent intent=new Intent();
ComponentName component=new
ComponentName(this,SecondActivity.class);
intent.setComponent(component);
startActivity(intent);

 20

 Services

 21

Services

 A service does not have a visual user interface
 Runs in the background for an indefinite period

Eg service might play background audio as user does
something else.
Might fetch data over the network
Calculate something
Provide a result to an activity

 Each service extends the Service base class
 Services run in the main thread of the application

process.
Don’t block other components or user interface
Often spawn another thread for time consuming tasks

 22

Services
 Services are like Activities, but without a UI
 Services are not intended as background threads

Think of an audio player where the audio keeps
playing while the user looks for more audios to play or
uses other apps
Don’t think of a cron job (e.g. run every day at
3am), use Alarms to do this

 Several changes in 2.0 related to Services
See http://android-developers.blogspot.com/2010/02
/service-api-changes-starting-with.html

 23
(c) Luca Bedogni 2012 23

A Service is an application that can perform long-
running operations in background and does not provide
a user interface.

A Service is an application that can perform long-
running operations in background and does not provide
a user interface.

 Android: Services

Activity UI, can be ended when it loses visibility

 Service No UI, ended when it terminates or
when it is terminated by other components

 A Service provides a robust environment for background
tasks …

 24
(c) Luca Bedogni 2012 24

 Android: Services

 A Service is started when an application
component starts it by calling startService(Intent).

 Once started, a Service runs in background
indefinetely, even if the component that started it is
destroyed.

 Termination of a Service:
 1. selfStop() self-termination of the service
 2. stopService(Intent) terminated by others
 3. System-decided termination (i.e. memory

shortage)

 25
(c) Luca Bedogni 2012 25

Android: Service Lifetime

OnCreate()

OnStartCommand()

RUNNINGRUNNING

onDestroy()

startService()

startService()

stopService()
selfStop()

startService() might cause the execution of
OnCreate+OnStartCommand, or only of
OnStartCommand, depending whether the
Service is already running …

OnCreate() executed only once when the Service is created.

 26
(c) Luca Bedogni 2012 26

Android: Service Lifetime

OnCreate()

OnStartCommand()

RUNNINGRUNNING

onDestroy()

Two Types of Services:

1. Local Services: Start-stop
lifecycle as the one shown.
1. Local Services: Start-stop
lifecycle as the one shown.

2. Remote/Bound Services:
Bound to application
components.
Allow interactions with them,
send requests, get results, IPC
facilities.

2. Remote/Bound Services:
Bound to application
components.
Allow interactions with them,
send requests, get results, IPC
facilities.

 27
27

 Services

 A Service is an application component that runs in the
background, not interacting with the user, for an
indefinite period of time.

 A Service is not a separate process. The Service object
itself does not imply it is running in its own process;
unless otherwise specified, it runs in the same process as
the application it is part of. A Service is not a thread. It
is not a means itself to do work off of the main thread
(to avoid Application Not Responding errors).

 Higher priority than inactive Activities, so less likely to
be killed

If killed, they can be configured to re-run
automatically (when resources available)

 28
28

 Services

 If a service and the respective activity are run on the
same thread, then the activity will become unresponsive
when the service is being executed for long running
operations.

 Each service class must have a corresponding <service>
declaration in its package's AndroidManifest.xml

<service android:name=”.MyService” />

 29
29

Services

 Services can be started with Context.startService() and Context.bindService() in
the main thread of the application’s process.

CPU intensive tasks must be offloaded to background threads using
Thread or AsyncTask
startService(new Intent(getBaseContext(), MyService.class));
startService(new Intent(“net.learn2develop.MyService”));

 To stop a service:
stopService(new Intent(getBaseContext(), MyService.class)) or stopSelf()

 Alarms can be used to fire Intents at set times. These can start services,
open Activities, or broadcast Intents

 The written services class should extend Service class and has three
methods

public IBinder onBind(Intent arg0) { ... }
public int onStartCommand(Intent intent, int flags, int startId) { ... }
public void onDestroy() { ... }

 30
30

Creating a Service
 Subclass Service, then override:

onStartCommand() -- called when startService() is
called. Then you can call stopSelf() or stopService()

onBind() -- called when bindService() is called.
Returns an IBinder (or null if you don't want t
o be bound).
onCreate() -- called before above methods.
onDestroy() -- called when about to be
shutdown.

 There are two classes you can subclass:
Service: you need to create a new thread,
since it is not created by default.
IntentService. This uses a worker thread to
perform the requests, and all you need to do is
override onHandleIntent. This is the easiest,
provided you don't need to handle multiple requests.

 31
31

Services Lifecycle

 A Service has three lifecycle methods:
1. void onCreate()
2. void onStartCommand()
3. void onDestroy()

 onStartCommand() is invoked when a
service is explicitly started using
startService() method

 onDestroy() is invoked when a service is
stopped using stopService() method

 32
32

 Creating a Service

 Started Services

 33
33

 Creating a Service (Started Service)

import android.app.Service;

import android.content.Intent;

import android.os.IBinder;

public class MyService extends Service {

 @Override

 public void onCreate() {

 // TODO: Actions to perform when service is created.

 }

 @Override

 public IBinder onBind(Intent intent) {

 // TODO: Replace with service binding implementation.

 return null; }

 34
34

 Creating a Service

 @Override

 public int onStartCommand(Intent intent, int flags, int startId) {

 // TODO Launch a background thread to do processing.

 return Service.START_STICKY;

 }

 @Override

 public void onDestroy () {

 // TODO: Actions to perform when service is ended.

 }

}

 35
35

onStartCommand

 Called whenever the Service is started with
startService call

So beware: may be executed several times in Service’s lifetime!
Controls how system will respond if Service restarted
(START_STICKY) means the service will run indefinitely until
explicitly stopped
Run from main GUI thread, so standard pattern is to create a
new Thread from onStartCommand to perform processing and
stop Service when complete

 36

onStartCommand() returns a flag which tells the OS that the
service is either sticky or not_sticky.

Both codes are only relevant when the phone runs out of
memory and kills the service before it finishes executing.

• START_STICKY tells the OS to recreate the service
after it has enough memory and call onStartCommand()
again with a null intent.

• START_NOT_STICKY tells the OS to not bother
recreating the service again. There is also a third code

• START_REDELIVER_INTENT that tells the OS to
recreate the service AND redeliver the same intent to
onStartCommand().

 Services

 37

 Add to AndroidManifest.xml

 Create the Service class

public class MyService extends Service {
 @Override
 public void onCreate() {
 }
 @Override
 public void onStartCommand(Intent intent, int startId) {
 //do something
 }
 @Override
 public IBinder onBind(Intent intent) {
 return null;
 }
}

<service android:enabled=“true” android:name=“.MyService”></service>

 Example

 38

Client code

public class MyActivity extends Activity {

 .…
 startService(new Intent(this, MyService.class);
 .…

stopService(new Intent(this, MyService.class));
 .…

 }

Start/Stop the Service

 39
39

Services using IntentService class
 To easily create a service that runs a task asynchronously and terminates

itself when it is done, you can use the IntentService class

 The IntentService class is a base class for Service that handles
asynchronous requests on demand

 It is started just like a normal service; and it executes its task within a
worker thread and terminates itself when the task is completed

 // Create a class that extends IntentService class instead of
Service class

 public class MyIntentService extends IntentService { }

 // create a constructor and call superclass with the name of the intent service as a string

 public MyIntentService() { super(“MyIntentServiceName”); }

 // onHandleIntent() is executed on a worker thread

 protected void onHandleIntent(Intent intent) { … }

 40
40

 Services using IntentService class

 The IntentService class does the following:
 Creates a default worker thread that executes all intents delivered

to onStartCommand() separate from your application's main thread.
 Creates a work queue that passes one intent at a time to your

onHandleIntent() implementation, so you never have to worry about
multi-threading.

 Stops the service after all start requests have been handled, so you
never have to call stopSelf().

 Provides default implementation of onBind() that returns null.
 Provides a default implementation of onStartCommand() that sends

the intent to the work queue and then to your onHandleIntent()
implementation.

 All you have to do is handle onHandleIntent().

 41
41

Services using IntentService class

public class HelloIntentService extends IntentService {

 // A constructor is required, and must call the super IntentService(String)
 // constructor with a name for the worker thread.

 public HelloIntentService() {
 super("HelloIntentService");
}

 // The IntentService calls this method from the default worker thread
with the intent that started
 // the service. When this method returns, IntentService stops the service,
as appropriate.

 42
42

Services using IntentService class
 @Override
 protected void onHandleIntent(Intent intent) {
 // Normally we would do some work here, like download a file.
 // For our sample, we just sleep for 5 seconds.
 long endTime = System.currentTimeMillis() + 5*1000;
 while (System.currentTimeMillis() < endTime) {
 synchronized (this) {
 try {
 wait(endTime - System.currentTimeMillis());
 } catch (Exception e) { }
 }
 }
 }
}

 43
43

 Services

 Declare services in manifest
 Service Lifecycle:

onCreate, onStartCommand, onDestroy
 Can start services by passing in an intent similar to

starting an activity
 Must stop service before starting up another instance

Best to start service in onCreate/onResume and stop in onPause

 44
44

 Bound Services

 45
(c) Luca Bedogni 2012 45

Android: Bound Service

OnCreate()

OnBind()OnBind()

onDestroy()

onUnbind()onUnbind()

onRebind()onRebind()
Client interacts with the Service …

A Bound Service
allows components
(e.g. Activity) to
bind to the services,
send requests,
receive response.

A Bound Service
can serve
components
running on different
processes (IPC).

 46
(c) Luca Bedogni 2012 46

Android: Bound Service

ServiceService Component
(e.g. Activity)
Component

(e.g. Activity)

IBinderIBinder

IBinder onBind()

ServiceConnection ServiceConnection

bindService(Intent, ServiceConnection, flags)

onServiceConnected(ComponentName, IBinder)

When the connection is
established, the Service will call
the onServiceConnected and
pass a reference of the IBinder
to the Component.

 Through the IBinder, the Component can send requests to the Service …

 47
(c) Luca Bedogni 2012 47

Android: Bound Service

When creating a Service, an IBinder must be created to
provide an Interface that clients can use to interact with
the Service … HOW?
1. Extending the Binder class (local Services only)

- Extend the Binder class and return it from
onBind()

- Only for a Service used by the same
application

1. Using Messenger
 - Allow access to a Service (in a different
 process) from different applications.

 48
(c) Luca Bedogni 2012 48

Android: Bound Service

IBinder
 Base interface for a remotable object, the core part of a
lightweight remote procedure call mechanism designed for high
performance when performing in-process and cross-process calls.
This interface describes the abstract protocol for interacting with a
remotable object. Do not implement this interface directly, instead
extend from Binder.
Binder
 Base class for a remotable object, the core part of a lightweight
remote procedure call mechanism defined by IBinder. This class
is an implementation of IBinder that provides standard local
implementation of such an object.

 49
49

 Bound Services

Local service

 50
(c) Luca Bedogni 2012 50

public class LocalService extends Service {
// Binder given to clients
private final IBinder sBinder=new SimpleBinder();

@Override
public IBinder onBind(Intent arg0) {

// TODO Auto-generated method stub
return sBinder;

}

class SimpleBinder extends Binder {
LocalService getService() {

return LocalService.this;
}

}
}

Android: Bound Service

 51
(c) Luca Bedogni 2012 51

ServiceConnection

Interface for monitoring the state of an application service. the methods on
this class are called from the main thread of your process.
public abstract void onServiceConnected (ComponentName name, IBinder service)

Called when a connection to the Service has been established, with the IBinder of the
communication channel to the Service.

Parameters

name The concrete component name of the service that has been connected.

service The IBinder of the Service's communication channel, which you can now make
calls on.

Android: Bound Service

 52
(c) Luca Bedogni 2012 52

ServiceConnection

Interface for monitoring the state of an application service. the methods on
this class are called from the main thread of your process.
public abstract void onServiceDisconnected (ComponentName name)

Called when a connection to the Service has been lost. This typically happens when the
process hosting the service has crashed or been killed. This does not remove the
ServiceConnection itself -- this binding to the service will remain active, and you will
receive a call to onServiceConnected(ComponentName, IBinder) when the Service is next
running.

Parameters

name The concrete component name of the service whose connection has been lost.

Android: Bound Service

 53
(c) Luca Bedogni 2012 53

public class MyActivity extends Activity {
LocalService lService;

private ServiceConnection mConnection=new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName arg0, IBinder service)
{
 SimpleBinder sBinder=(SimpleBinder) service;
 lService=sBinder.getService();

….
}

@Override
public void onServiceDisconnected(ComponentName arg0) {

}
 };

Android: Bound Service

 54
(c) Luca Bedogni 2012 54

public abstract boolean bindService (Intent service, ServiceConnection conn, int flags)

The client (activity) calls bindService to bind to the service using
ServiceConnection

Intent intent = new Intent(this, LocalService.class);
bindService(intent, mConnection, Context.BIND_AUTO_CREATE);

•The first parameter of bindService() is an Intent that explicitly names the
service to bind.

•The second parameter is the ServiceConnection object.

•The third parameter is a flag indicating options for the binding. It should
usually be BIND_AUTO_CREATE in order to create the service if its not
already alive. Other possible values are BIND_DEBUG_UNBIND and
BIND_NOT_FOREGROUND, or 0 for none.

Android: Bound Service

 55
55

 Bound Services

 Remote service

 56
56

Messenger
 Reference to a Handler, which others can use to send

messages to it.
 This allows for the implementation of message-based

communication across processes, by :
creating a Messenger pointing to a Handler in one
process;
and handing that Messenger to another process

Note: the implementation underneath is just a simple
wrapper around a Binder that is used to perform the
communication

 Bound Services

 57
57

 Messenger(Handler target)
Create a new Messenger pointing to the given Handler. Any
Message objects sent through this Messenger will appear in the
Handler as if Handler.sendMessage(Message) had been called
directly.

 Messenger(IBinder target)
Create a Messenger from a raw IBinder, which had previously
been retrieved with getBinder().

 IBinder getBinder()
Retrieve the IBinder that this Messenger is using to
communicate with its associated Handler.

 Bound Services

 58
(c) Luca Bedogni 2012 58

public class RemoteService extends Service {
// Binder given to clients

 final Messenger mMessenger = new Messenger(new IncomingHandler());

@Override
public IBinder onBind(Intent arg0) {

// TODO Auto-generated method stub
return Messenger.getBinder();

}

class IncomingHandler extends Handler {
 @Override

public void handleMessage(Message msg) {
.....

}
}

}

 Bound Services

 59
(c) Luca Bedogni 2012 59

public class MyActivity extends Activity {
Messenger mService;

private ServiceConnection mConnection=new ServiceConnection() {
@Override
public void onServiceConnected(ComponentName arg0, IBinder service)
{
 mService = new Messenger(service);

….
 }

@Override
public void onServiceDisconnected(ComponentName arg0) {

}
 };

 Bound Services

Android Android ServicesServices

Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

