
Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

AsyncTask

Multi-threading in Android

The AsyncTask class allows you to run non-UI Threads that
interact with the UI thread in a well defined way.

This class allows to perform background operations and publish
results on the UI thread without having to manipulate other
threads and/or handlers.

AsyncTasks are given high priority, so they should ideally be used for
short operations (a few seconds at the most). If you need to keep
threads running for long periods of time, it is highly recommended you
use the various APIs provided by the java.util.concurrent package
such as Executor, ThreadPoolExecutor and FutureTask.

Android AsyncTasks

The AsyncTask is designed to be a helper class, and
there are four common methods you will often need to
implement:

• onPreExecute()
• doInBackground(Params… values)
• onProgressUpdate(Progress... values)
• onPostExecute(Result result)

Android AsyncTasks

AsyncTasks API

Something doInBackground(String... params) {
return null;

}

protected void onPreExecute() {
}

protected void onPostExecute(Something b) {
}

protected void onProgressUpdate(Type... values) {
}

1. onPreExecute() – This calls on the UI thread before the
thread starts running. This method is usually used to
setup the task, for example by displaying a progress bar.

2. doInBackground(Params… values) – this is the
method that runs on the background thread. In this
method you should put all the code you want the
application to perform in background. The
doInBackground() is called immediately after
onPreExecute(). When it finishes, it sends the result to
the onPostExecute().

Android AsyncTasks

3. onProgressUpdate(Progress... values) - called when
you invoke publishProgress() in the doInBackground().
Runs on the UI thread.

4. onPostExecute(Result result) – called on the UI thread
after the background thread finishes. It takes as parameter
the result received from doInBackground().

Android AsyncTasks

(c) Luca Bedogni 2012 7

AsyncTask is a Thread helper class (Android only). AsyncTask is a Thread helper class (Android only).

Android: AsyncTask

 Computation running on a background thread.
 Results are published on the UI thread.

 AsyncTask must be created on the UI thread.
 AsyncTask can be executed only once.
 AsyncTask must be canceled to stop the
 execution.

RULESRULES

How Android threading works with
AsyncTasks

 Create a class that extends AsyncTask
 To start the new thread, call the AsyncTask's
execute method

 When execute is called, Android does the
following:

1. runs onPreExecute in the main (UI) thread
2. runs doInBackground in a background thread
3. runs onPostExecute in the main (UI) thread

(c) Luca Bedogni 2012 9

private class MyTask extends AsyncTask<Par, Prog, Res>private class MyTask extends AsyncTask<Par, Prog, Res>

Android: AsyncTask

Par  type of parameters sent to the AsyncTask
Prog  type of progress units published during the execution
Res  type of result of the computation

private class MyTask extends AsyncTask<Void,Void,Void>

private class MyTask extends AsyncTask<Integer,Void,Integer>

EXAMPLESEXAMPLES

You create an AsyncTask object by first creating a class derived from the
AsyncTask class. The derived class must use generics to identify the
parameter data types to the doInBackground, onProgressUpdate, and
onPostExecute methods respectively like so:

 private class MyTask extends AsyncTask<String, Void, String>

In the class you create, you add code for whatever AsyncTask methods
you want to use. Then after you have added this class as a subclass in
your Activity or View code, you do the following to run the AsyncTask
at some other place in your code, and you pass it whatever values (or
array of values) you wish to pass to it:

new MyTask().execute(outgoingLine);

Creating an AsyncTasks

(c) Luca Bedogni 2012 11

Android: AsyncTask

 The UI Thread invokes the execute method of the
AsyncTask:

EXECUTION of the ASYNCTASKEXECUTION of the ASYNCTASK

(new Task()).execute(param1, param2 … paramN)

 After execute is invoked, the task goes through four steps:

1.onPreExecute()  invoked on the UI thread
2.doInBackground(Params…) computation of the AsyncTask

 can invoke the publishProgress(Progress…) method
3.onProgressUpdate(Progress …)  invoked on the UI thread
4.onPostExecute(Result)  invoked on the UI thread

Asynchronous Tasks :
 the lifecycle

AsyncTask as Abstraction

13

private class DownloadFilesTask extends AsyncTask<URL, Integer, Long>
{
 protected Long doInBackground(URL... urls) { // on some background
thread
 int count = urls.length; long totalSize = 0;
 for (int i = 0; i < count; i++) {
 totalSize += Downloader.downloadFile(urls[i]);
 publishProgress((int) ((i / (float) count) * 100));
 }
 return totalSize;
 }
 protected void onProgressUpdate(Integer... progress) { // on UI thread!
 setProgressPercent(progress[0]);
 }
 protected void onPostExecute(Long result) { // on UI thread!
 showDialog("Downloaded " + result + " bytes");
 }
}
new DownloadFilesTask().execute(url1, url2, url3); // call from UI
thread!

See GoogleSearch

Mobile & Cloud Computing

Pr. REDA Oussama Mohammed

2015/2016

Université Mohammed V
FACULTE DES SCIENCES
RABAT / FSR
Département informatique

 Master IAO
Master II–Semestre 3
 Cours

