
Mobile Cloud Computing

Introduction of Mobile Cloud
Computing

Motivation

• Mobile devices (e.g., smartphone, tablet pcs, etc) are increasingly becoming
an essential part of human life,

• Dream of “Information at your fingertips anywhere anytime”,

• Mobile devices still lack in resources compared to a conventional
information processing device such as PCs and laptops

Motivation

Soultion

› Mobile Cloud Computing (MCC)

Definitions

• Mobile Network

• Cloud Computing

Definitions

Cloud

Grid

Cluster

utility

Definitions

Cloud

Grid

Cluster

utility

Utility computing is the

packaging of computing

resources, such as

computation and storage, as a

metered service similar to a

traditional public utility

Definitions

Cloud

Grid

Cluster

utility A computer cluster is a group

of linked computers, working

together closely so that in

many respects they form a

single computer.

Definitions

Cloud

Grid

Cluster

utility Grid computing is the application

of several computers to a single

problem at the same time —

usually to a scientific or technical

problem that requires a great

number of computer processing

cycles or access to large amounts

of data

Definitions

Cloud

Grid

Cluster

utility Cloud computing is a style of

computing in which dynamically

scalable and often virtualized

resources are provided as a service

over the Internet.

WHAT IS CLOUD COMPUTING?

Evolution of the cloud

WHAT IS CLOUD COMPUTING?

WHAT IS CLOUD COMPUTING?

Virtualization type 1 and type 2

WHAT IS CLOUD COMPUTING?

NIST Definition

“A model for enabling convenient, on-
demand network access to a shared pool
of configurable computing resources (e.g.,
networks, servers, storage, applications,
and services) that can be rapidly
provisioned and released with minimal
management effort or service provider
interaction”

Cloud computing is a style of computing in which dynamically scalable
and often virtualized resources are provided as a service over the Internet.

IaaS: Infrastructure as a Service

PaaS: Platform as a Service

SaaS : Software as a Service

Major Types of cloud service

IaaS: Infrastructure as a Service

PaaS: Platform as a Service

SaaS : Software as a Service

Major Types of cloud service Different Cloud services

SaaS

PaaS

IaaS

Amazon Google Microsoft Salesforce

Service Delivery Model Examples

Products and companies shown for illustrative purposes only and should not

be construed as an endorsement

Cloud Deployment Models

Private cloud
-Enterprise owned or leased

Community cloud
-Shared infrastructure for specific community

Public cloud
-Sold to the public, mega-scale infrastructure

Hybrid cloud
-composition of two or more clouds

Mobile clould Computing

MCC

Architectures of MCC

Where is the MCC?

› Mobile Cloud Computing (MCC) at
its simplest, refers to an
infrastructure where both the data
storage and the data processing
happen outside of the mobile
device. Mobile cloud applications
move the computing power and
data storage away from mobile
phones and into the cloud,
bringing applications and mobile
computing to not just smartphone
users but a much broader range of
mobile subscribers”

Definition

Mobile cloud computing Architecture

MCC Service-Oriented Architecture

Client-agent Architecture of MCC

Agent-client scheme

Collaborative Architecture of MCC

Collaborated scheme

Offloading
Application partition and
offloading technology play an
important role for the
implementation of elastic
applications.

Application partition decompose
complex workload to atomic ones,
thus can be processed
concurrently.

Offloading application can free
burden of mobile devices.

Opportunistic augmentation of resources
• Processing
• Storage
• etc…

Offloading

• Cloudlet
- Scalability

• Remote cloud
- Latency in the
communication

• Device-to-Device (D2D)
- Social participation

Hybrid offloading
systems

Social-aware hybrid offloading

Advantages of MCC

Improving reliability

Extending battery lifetime

Improving data storage capacity

and processing power

How MCC Can Extend Battery Lifetime?

Challenges:

• Battery is one of the main
concerns for mobile devices,

• Traditional approaches need
to changes the structure of
mobile devices.

• The additional cost for the
end mobile users is not
appealing in wireless
networks.

MCC’s solution:

› Computation offloading

technique:

– Immigrate the large computations

and complex processing from

resource-limited devices (i.e.,

mobile devices) to resourceful

machines (i.e., servers in clouds).

› This avoids taking a long

application execution time on

mobile devices which results in

large amount of power

consumption.

How MCC Can Improve Storage Capacity?

Challenges
• Users need more and

more capacity for
saving the essential
information on mobile
devices,

• Need to change the
device,

• More capacity, more
weight

MCC’s solution
• MCC is developed to

enable mobile users to
store/access the large
data on the cloud
through wireless
networks,

• Examples of existing
services:
• Amazon Simple Storage

Service (Amazon S3),
• Image Exchange,
• Flickr, ShoZu.

How MCC Can Improve Reliability?

Challenges
• Users need reliable

backup for their
information,

• Lack of data security
model for both service
providers and users in
existing mobile users,

MCC’s solution

• Storing data or running
applications on clouds is an
effective way to improve
the reliability since the data
and application are stored
and backed up on a number
of computers.

Applications of MCC

• Mobile commerce,

• Mobile healthcare,

• Mobile learning,

• Mobile Gaming.

Mobile Commerce

• Mobile commerce (m-commerce) is a business model for commerce
using mobile devices.

Mobile Commerce • Some categories of M-commerce:
• Finance,

• Advertising,

• Shopping.

Application Classes Type Examples

Mobile Financial application B2C (Business to Customer),
B2B (Business to Business)

Banks, brokage firms,
mobile-user fees

Mobile Advertising B2C Sending Custom made
advertisement according to
users’ physical location

Mobile Shopping B2C, B2B Locator/order certain
products a mobile terminal

Mobile Learning (M-LEARNING) = (E-LEARNING) + Mobility

Traditional m-learning applications have

limitations in terms of

1- High cost of devices and network,

2- Low network transmission rate,

3- Limited educational resources

Cloud-based m-learning applications

are introduced to solve these

limitations.

For example, utilizing a cloud with the

large storage capacity and powerful

processing ability, the applications

provide learners with much richer

services in terms of data (information)

size, faster processing speed, and

longer battery life.

Mobile-healthcare

Comprehensive health monitoring services,
Intelligent emergency management system

› Health-aware mobile devices detect pulse-rate,

› Pervasive access to healthcare information,

› Pervasive lifestyle incentive.

Mobile Gaming• Mobile game (m-game) is a potential market generating revenues for service
providers.

• M-game can completely offload game engine requiring large computing
resource (e.g., graphic rendering) to the server in the cloud, and gamers only
interact with the screen interface on their devices.

Other applications on MCC

• Keyword based searching

• Voice based searching

• Tag- Based searching

• ISSUES AND APPROACHES OF MCC

Due to the integration of
two different fields, i.e.,
cloud computing and
mobile networks,

MCC has to face many
technical challenges.

Issues in Mobile Communication
Side

Availability

Heterogeneity

Network latency and limited

bandwidth

Thank you

HTTP

Mobile device HTTP protocol Cloud

Ressource request (service)/ Client initiates communication

Retrieve new data / Client decides of data updates checks on the server

==>

No way for clients to know others' clients data update

<== Server cannot iniate communication (cannot push data to client)

Standard request/response model of communication

How to design around?

Communication

Client-driven

HTTP

Mobile device HTTP protocol Cloud

User interaction with the app
Pull down to refresh UI ==> fetch data from the server

Update on view opened / on App launch

==> over user refresh may consume bandwidth when there is

nothing to update

However, the user will stop refreshing at some point.

Communication

Client-driven

HTTP Polling

Mobile device HTTP protocol Cloud

Client continuously request data at regular interval of t. (ex: 3 sec)
Client doesn't know if there are updates or not.

- Wasting ressource on the server (ressource allocation, process request,
check availaible data for the client, send response back)

- Wasting network ressources, memory and CPU
Lots of clients ==> multiply ressources waste and effects on the network

Conclusion : significant cost in getting updates with Polling

Communication

Client-driven

Adaptive HTTP Polling

Mobile device HTTP protocol Cloud

Data updating rapidly in the server every t seconds (short time interval)

==> client should get a response for each request sent

whithin t seconds time interval

if the client doesn't get the response after n requests, it adapts its polling rate. 2t,
4t, ..., 2kt (client : maybe i am wasting ressources on the server)

2kt a very long polling interval ==> low update because of client polling policy.

switch back to short polling rate after a new update

Communication

Client-driven

Adaptive HTTP Polling

Mobile device HTTP Cloud

Data updating rapidly in the server every t seconds (short time interval)

==> client should get a response for each request sent

whithin t seconds time interval

if the client doesn't get the response after n requests, it adapts its polling rate.

exponential backoff 2Kt
(client : maybe i am wasting ressources on the server)

2Kt a very long polling interval ==> low update because of client polling policy.

switch back to short polling rate after a new update

Communication
Client-driven

47

Mobile-Cloud Services
(Push notifications)

Solution

Recap: Accessing Data in Cloud

• A typical design pattern is that a device
updates/receives data in the cloud
• Cloud as a rendezvous point

• Challenge: How do you keep data on a device fresh?

48

Recap: Solution Space

• Mobile poll

• Cloud push
Each app push

Shared (infrastructure) push

49

Shared Push Service

• A single persistent connection from device to a cloud push service
provider

• Multiple application providers push to the service provider

• Service provider pushes to a device using the persistent connection

• Two examples
• Apple Push Notification Service (APNS)

• Google Cloud Messaging (GCM)

50

Design Requirements of a Shared Push Service

• Security/Authorization
• Do not allow arbitrary app to push to a device

• Scalability
• A large scale system may have millions of clients

• Fault tolerance
• Client/device, push servers all can fail

• Generality
• Can be used by diverse applications

51

Design Point: Authorization

52

App

Device

Registration(DEV_ID, App_ID)
Design 2: App query
registered devices;

Multicast

Design 3: Device notifies registration ID to its server;

Design 1: App does not know
registered devices. Broadcast to all.

Design Point: What to Push?

• Option 1: Just push signal (data available) to devices and then devices
fetch from app servers

• Option 2: push app data

53

Ap

p Device

Design Point: Reliability (What Can Go Wrong)

54

Ap

p
Device

RegID=Registration(DEV_ID, App_ID)
App sends to

regIDs

Device notifies regID to its server;

Google Cloud Messaging

• Very similar to APNS

55

GCM Servers

See http://developer.android.com/guide/google/gcm/gs.html

for detailed steps

GCM Flow: App Developer Registration
• App developer registers a project at Google

Open API console: https://code.google.com/apis/console/

After Create project

56

Project ID; Sender
ID

https://code.google.com/apis/console/

Summary: GCM Flow
• Enabling cloud to device messaging

• App (on device) registers with Google to get registration ID

• App sends registration ID to its App Server

• Per message
• App Server sends (authenticated) message to Google

• Google sends message to device, which sends to app

• Disabling cloud to device messaging
• App can unregister ID, e.g., when user no longer wants push

57

Google cloud messaging
GCM

Problem

You want to get "push" notifications sent asynchronously from a server,
without setting you your own complex infrastructure. This can be used to
send short data (up to about 4KB), or to send a "ping" notification which
will cause the app to download new data from your server.

Solution

Consider using Google Cloud Messaging (GCM)

Google cloud messaging
GCM

GCM is a free service offered to Android developers to deliver small messages
direct to your application running on an Android device.

This avoids your application having to poll a server, which would either;

be not very responsive; why? it takes time to poll the server.

or

very bad for battery life. why? handling the operation poll context drains battery.

Google cloud messaging
GCM

The basic operation of GCM is:

1) The app registers with GCM to recieve messages;

2) Your server detects some condition that requires notifying the particular user's device (eg.,
new or changed data available) and consequently sends a message to the GCM server.

3) The GCM server sends the message to your user's device, where it is passed to your app at
a BroadcastReceiver

4) You do something with the information.

Google cloud messaging
GCM

Google cloud messaging
GCM

The basic steps are:

1) Sign up with Google to use GCM
2) Configure your client's AndroidManifest.xml
3) Create a BroadcastReceiver to handle the incoming notifications
...
4) Configure your back-end server to notify the GCM server when it has
data to send
or push2sync:

send a notice to tell the client to download new data, a form of distributed
MVC or push to synchronize model of update or notification.

Google cloud messaging
GCM

==== Sign up with Google to use GCM

Assume that you have a Google developer account (if not, Sign up).

Go to your Developer Console @ :

https://console.firebase.google.com/

* Create a Project.

* Note down: the Server key and the Sender ID

You can find them later @ :

https://console.firebase.google.com/project/PROJECTNAME/settings/cloudmessagi
ng

Google cloud messaging
Exemple Application

Downstream messaging

Downstream messaging scenario:

From server -----> to -----> client via GCM

App = Client + Buisness Server + GCM server

Client = Activity + Broadcast receiver + Service

Buisness Server = Java class = our server

Downstream messaging GCM
Client

Activity
Register with GCM

public class GcmMainActivity extends Activity {
// Everything you already know
final String registrationId
private GoogleCloudMessaging gcm;

protected void onCreate(Bundle savedInstanceState) {
// Everything you already know
gcm = GoogleCloudMessaging.getInstance(context);
registrationId = gcm.register(SENDER_ID);

}

Downstream messaging GCM
Client

Activity
Register with GCM

public class GcmMainActivity extends Activity {
// Everything you already know

final String registrationId
private GoogleCloudMessaging gcm;

protected void onCreate(Bundle savedInstanceState) {

// Everything you already know here........
gcm = GoogleCloudMessaging.getInstance(context);
registrationId = gcm.register(SENDER_ID);

// Blocking operation Why?
}

Downstream messaging GCM
Client

Activity

Register with GCM
gcm.register(SENDER_ID)

is Blocking

it happens in the cloud

==>

Asynctask to the rescue

Downstream messaging GCM
Client

Activity

Register with GCM

private void registerWithGCMInBackground() {

new AsyncTask() {

@Override

protected String doInBackground(Void... params) {

gcm = GoogleCloudMessaging.getInstance(context);

registrationId = gcm.register(SENDER_ID);

sendRegistrationIdToBackend(); // your own implementation

}.execute(null, null, null);

...

}

Downstream messaging GCM
Client

Activity
Register with GCM

public class GcmMainActivity extends Activity {
// Everything you already know

final String registrationId
private GoogleCloudMessaging gcm;

protected void onCreate(Bundle savedInstanceState) {
// Everything you already know here........

registerWithGCMInBackground();
}

Downstream messaging GCM
Client

Activity
Register with GCM

GCM needs play services availaible

In your app's startup code (e.g., in onCreate() or onResume()),
check that Google Play Services are available, with the static
method call :

GooglePlayservicesUtil.isGooglePlayServicesAvailable(Context ctx);

Downstream messaging GCM
Client

Activity
Register with GCM
GCM needs play services availaible

boolean isPlayServicesAvailable() {
int ret =

GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);

if (ConnectionResult.SUCCESS == ret)
return true;
return false;

}

Downstream messaging GCM
Client

Activity
Register with GCM

public class GcmMainActivity extends Activity {

// Everything you already know

final String registrationId

private GoogleCloudMessaging gcm;

protected void onCreate(Bundle savedInstanceState) {

// Everything you already know here........

if (isPlayServicesAvailable())

registerWithGCMInBackground();

else txtView.setText(“ Check for play services' availabality failed”);

}

Downstream messaging GCM
Client

Activity
Register with GCM

public class GcmMainActivity extends Activity {
@Override

protected void onResume() {
super.onResume();

if (! isPlayServicesAvailable())

txtView.setText(“ Check for play services' availabality failed”);
}

Downstream messaging GCM
Client

BroadcastReceiver
Receive from GCM

public class GcmReceiver extends WakefulBroadcastReceiver {

@Override

public void onReceive(Context context, Intent intent) {

// Recycle "intent" into an explicit intent for the handler

ComponentName comp =

new ComponentName(context.getPackageName(), GcmService.class.getName());

intent.setComponent(comp);

startWakefulService(context, intent);

setResultCode(Activity.RESULT_OK);

}

}

Downstream messaging GCM
Client

Service
Handle GCM message

public class GcmService extends IntentService {

public GcmService() {

super(GcmService.class.getSimpleName());

}

@Override

protected void onHandleIntent(Intent intent) {

String gcmMessage = intent.getExtras().getString("message");

processGCM_Message(gcmMessage); // your implimentation here

GcmReceiver.completeWakefulIntent(intent);

}

}

Downstream messaging GCM
Client

AndroidManifest.xml

Downstream messaging GCM
Server (Buisness server)

public class GcmBusinessServer {

/** Confidential Server API key gotten from the Google Dev
Console -> Credentials -> Public API Access -> Key for Android Apps */

final static String AUTH_KEY =;

final static String regIdFromClientApp =;

final static String POST_URL =
"https://android.googleapis.com/gcm/send";

Downstream messaging GCM
Server (Buisness server)

public static void main(String[] args) throws Exception {

final String[][] MESSAGE_HEADERS = {

{ "Content-Type", "application/json"},

{ "Authorization", "key=" + AUTH_KEY}

};

Downstream messaging GCM
Server (Buisness server)

/*
the sent json message form: destination + data
{

"to" : {"regIdFromClientApp"},
"data" : {

"Master": "IAO"

"Module": "Mobile and Cloud"
"Date": "02 February 2016"
"Message":"Prepare for exam! GCM wishes you good luck."

}
}
*/

Downstream messaging GCM
Server (Buisness server)

String jsonMessage =

"{\n" +

" \"to\" : {\""+ "regIdFromClientApp" + "\"},\n" +

" \"data\" : {\n" +

" \"Master\": \"IAO\"\n" +

" \"Module\": \"Mobile and Cloud\"\n" +

" \"Date\": \"02 February 2016\"\n" +

" \"Message\":\"Prepare for exam! GCM wishes you good luck.\"\n" +

" }\n" +

"}\n";

sendMessage(POST_URL, MESSAGE_HEADERS, jsonMessage);

}// end of main method

Downstream messaging GCM
Server (Buisness server)

private static void sendMessage(String postUrl, String[][] messageHeaders,

String jsonMessage) throws IOException {

HttpURLConnection conn = (HttpURLConnection) new
URL(postUrl).openConnection();

for (String[] h : messageHeaders) {

conn.setRequestProperty(h[0], h[1]);

}

Downstream messaging GCM
Server (Buisness server)

System.out.println("Connected to " + postUrl);

conn.setDoOutput(true);

conn.setDoInput(true);

conn.setUseCaches(false); // ensure response always from server

PrintWriter pw = new PrintWriter(

new OutputStreamWriter(conn.getOutputStream()));

Downstream messaging GCM
Server (Buisness server)

pw.print(jsonMessage);

pw.close();

System.out.println("Connection status code " + conn.getResponseCode());

} //end sendMessage method

}//end GcmBusinessServer class

for details see:

https://developer.android.com/reference/java/net/HttpURLConnection

