Université Mohammed V-Rabat Faculté des Sciences Département de Mathématiques Année universitaire: 2015-16 SMA-S5- Topologie Examen final 1h30

<u>Exercice 1</u>. $E = C(\mathbb{R})$ désigne l'espace vectoriel des applications définies, continues sur \mathbb{R} et à valeurs réelles. On considère l'ensemble X défini par

$$X = \{ f \in C(\mathbb{R}) \text{ telle que}(1+x^2) | f(x) | \text{ soit une fonction bornée} \}.$$

Pour tout $f \in X$, on pose $\mathbf{N}(f) = \sup_{x \in \mathbb{R}} (1+x^2)|f(x)|$ et $\mathbf{L}(f) = \int_{-\infty}^{+\infty} f(x)dx$. (On peut montrer mais on suppose que cette intégrale est convergente.)

- 1. Montrer que N définit une norme.
- 2a. Calculer L(g) où g désigne la fonction définie par $g(x) = \frac{1}{1+x^2}$.
- 2b. En écrivant $f(x) = \frac{1}{1+x^2} \cdot (1+x^2) f(x)$, montrer que $|L(f)| \le \pi N(f)$.
- 2c. Que peut on déduire pour l'application linéaire L? Peut on calculer exactement ||L||?

Exercice 2 Soit X un espace métrique, Y un espace topologique séparé et $f, g: X \to Y$ deux applications continues.

On considère $A = \{x \in X, f(x) = g(x)\}.$

- 1. On veut montrer que A est un fermé. Pour cela, soit $(x_n)_n$ une suite d'éléments de A qui converge vers une limite l, montrer que f(l) = g(l) puis conclure.
- 2. Montrer que si f et g coincident sur un ensemble Z dense de X, alors f et g coincident sur X.

Exercice 3 $E = C([0,1], \mathbb{R})$ désigne l'espace des fonctions définies et continues sur [0,1] et à valeurs dans \mathbb{R} muni de la norme de la convergence uniforme $||f|| = \sup_{x \in [0,1]} |f(x)|$. On rappelle que c'est un espace métrique complet.

- 1. Rappeler l'énoncé du théorème du point fixe.
- 2. On considère l'application $\phi: E \to E$ définie pour tout $f \in E$ par

$$\phi(f)(x) = \frac{1}{2} \int_0^1 \sin(x^2 + t^2) f(t) dt.$$

Montrer que $||\phi(f) - \phi(g)|| \le \frac{1}{2}||f - g||$.

3. Déduire que l'équation fonctionnelle $\phi(f) = f$ admet une solution unique dans E.

<u>Exercice 4</u> \mathbf{l}^{∞} désigne l'ensemble des suites réelles bornées et $\mathbf{c_0}$ le sous-ensemble des suites réelles convergentes vers 0. On munit \mathbf{l}^{∞} de la distance d donnée par $d(x, y) = \sup_{n} |x_n - y_n|$.

- 1. On veut montrer que $\mathbf{c_0}$ est un fermé de \mathbf{l}^{∞} . Pour cela, nous allons montrer que son complémentaire $\overline{\mathbf{c_0}}$ est un ouvert. Soit donc $z = (z_n)_n \in \overline{\mathbf{c_0}}$.
- 1a. On suppose que z converge vers une limite $l \neq 0$ et on suppose l > 0. Si $x \in \mathbf{c_0}$ est quelconque, en considérant la limite de la suite $(u_n)_n = (z_n x_n)_n$, déduire (en fonction de l) un minorant strictement positif de d(x,z) et ceci pour tout $x \in \mathbf{c_0}$. Trouver alors un réel strictement positif R tel que la boule B(z,R) soit contenue dans $\overline{\mathbf{c_0}}$.
- 1b. On suppose que la suite z est divergente. On suppose, par exemple, qu'il existe $\varepsilon > 0$ tel que $z_n \ge \varepsilon$ pour une infinité d'indices n. Proposer, ici aussi, un réel strictement positif R tel que la boule B(z,R) soit contenue dans $\overline{\mathbf{c_0}}$.
- 2. On désigne par V le sous espaces des suites nulles à partir d'un certain rang. Montrer, en utilisant la première question, que V n'est pas dense dans l^{∞} .

V est il fermé dans c_0 ?

Corrigé

Ex1. 1. N est une norme (facile à montrer).

2a. $L(g) = [arctan(x)]_{-\infty}^{+\infty} = \pi$.

2b. $|L(f)| = |\int_{-\infty}^{+\infty} \frac{1}{1+x^2} (1+x^2) f(x) dx| \le \int_{-\infty}^{+\infty} \frac{1}{1+x^2} . N(f) dx \le \pi N(f).$

2c. On remarque que L est linéaire et l'inégalité précédente prouve que L est continue.

On peut calculer ||L|| car, dans la question 2a, on a trouvé $L(g) = \pi$ et g fait partie de la boule unité car N(g) = 1. Le majorant π est donc atteint sur la boule unité, on a donc $||L|| = \pi$.

Ex2. 1. Soit $(x_n)_n$ une suite dans A convergente vers l, montrons que $l \in A$. Les applications f et g étant continues, la suite $(f(x_n))_n$ tend vers f(l) et la suite $(g(x_n))_n$ tend vers g(l). Les suites étant les mêmes et l'espace Y étant séparé, elles ont la même limite. Ainsi, f(l) = g(l) et $l \in A$.

2. Si f et g coincident sur Z tel que $\bar{Z} = X$, alors on a $Z \subset A$. Comme $Z \subset \bar{A} = A$ et $\bar{Z} = X$, on a A = X. f et g coincident donc partout sur X.

Ex3. 1. Rappel de l'énoncé du théorème du point fixe, voir cours.

$$||\phi(f) - \phi(g)|| = \sup_{x \in [0,1]} \frac{1}{2} |\int_0^1 \sin(x^2 + t^2)(f(t) - g(t))dt| \le \frac{1}{2} \int_0^1 |f(t) - g(t)|dt \le \frac{1}{2} ||f - g||.$$

3. Par application du théorème du point fixe, ϕ admet un unique point fixe dans l'espace métrique complet E.

Ex4. 1. Pour montrer que c_0 est fermé, nous allons montrer que son somplémentaire $\bar{c_0}$ est ouvert. Soit $z = (z_n)_n \in \bar{c_0}$ et on suppose, dans un premier temps, que z est convergente vers une limite l > 0. Dans ce cas, la suite $(z_n - x_n)_n$ tend vers l quel que soit la suite $x = (x_n)_n \in c_0$. On en déduit

$$d(x,z) = \sup_{z \in \mathbb{Z}} |z_n - x_n| \ge l.$$

En effet, si on avait d(x, z) < l, la suite z ne peut converger vers l. Ainsi, $d(x, z) \ge l$ ceci $\forall x \in c_0$ et donc $B(z, l) \subset \bar{c_0}$. $\bar{c_0}$ est donc bien un ouvert dans ce cas.

Maintenant, si z n'est pas convergente, on suppose, par exemple, qu'il existe $\varepsilon > 0$, et une infinité d'indices n tels que $z_n \ge \varepsilon$. On a alors

$$d(x,z) = \sup_{n} |z_n - x_n| \ge \varepsilon, \ \forall x \in c_0.$$

Sinon, si $d(x,z) < \varepsilon$, comme x_n tend vers 0, les z_n seront $< \varepsilon$ à partir d'un certain rang, ce qui n'est pas. On peut donc affirmer dans ce cas que $B(z,\varepsilon) \subset \bar{c_0}et\bar{c_0}$ est donc aussi ouvert dans ce cas.

2. V n'est pas dense dans l^{∞} car on a

$$V \subset c_0 \subset l^{\infty}$$

$$\bar{V} \subset \bar{c_0} = c_0$$

 c_0 étant strictement inclus dans l^{∞} , V n'est donc pas dense dans l^{∞} .

V n'est pas fermé dans c_0 , car on peut construire une suite dans V qui converge dans c_0 mais pas dans V, par exemple, la suite $(x^p)_p$, définie pour tout $p \in \mathbb{N}^*$ par $x^p = (x^p_n)_{n \geq 1}$, elle même définie par $x^p_n = 1/n$ si $n \leq p$ et $x^p_n = 0$ si n > p, est dans V. Elle converge vers la suite 1, 1/2, 1/3, 1/4, ..., 1/n, ... dans c_0 mais cette limite n'est pas dans V.