Universite Mohammed V- Agdal

Faculté des Sciences

Département de Mathématiques

Raba

Année Universitaire 2008/09
Session Printemps
Module de calcul différentiel

Série # 1

Exercice 1: On note $\mathcal{C}([a,b],\mathbb{R})$ l'espace vectoriel des fonctions définies et continues sur [a,b] et à valeurs dans \mathbb{R} surlequel on définit la norme

$$||f|| = \sup_{x \in [a,b]} |f(x)|.$$

On veut démontrer que cet espace vectoriel muni de cette norme est un espace de Banach. Pour cela, on se donne une suite de Cauchy $(f_n)_n$, et on veut montrer qu'elle converge dans cet espace.

- 1. Vérifier que pour tout $x \in [a, b]$, la suite $(f_n(x))_n$ est convergente dans \mathbb{R} . En déduire que la suite $(f_n)_n$ converge simplement vers une fonction f définie sur [a, b].
- 2. Montrer que la suite $(f_n)_n$ est uniformément convergente vers f sur [a,b]. Pour cela, on remarquera que

$$||f_n(x) - f(x)|| = \lim_{p \to +\infty} ||f_n(x) - f_p(x)||.$$

3. Déduire que f est continue en tout $x_0 \in [a, b]$ puis conclure.

Exercice 2: Soit E l'espace vectoriel des fonctions $y:[0,1]\to \mathbb{R}$ de classe \mathcal{C}^2 sur l'intervalle [0,1] s'annulant en 0 et 1. On pose

$$||y|| = \sup_{x \in [0,1]} |y(x)| \text{ et } [y] = |y'(0)| + ||y''||.$$

- 1. Montrer que [.] est une norme sur E et qu'on a $||y|| \leq [y]$ pour tout $y \in E$.
- 2. Montrer que E muni de cette norme est un espace de Banach.

Exercice 3: On munit successivement \mathbb{R}^2 des normes classiques:

$$\|(x,y)\|_1 = |x| + |y|, \ \|(x,y)\|_{\infty} = \max(|x|,|y|), \ \|(x,y)\|_2 = \sqrt{x^2 + y^2}.$$

Soit φ une forme linéaire sur \mathbb{R}^2 représentée dans la base canonique par la matrice (a, b). Montrer que $\|\varphi\|$ vaut successivement: $\max(|a|, |b|), |a| + |b|$ et $\sqrt{a^2 + b^2}$.

Exercice 4: 1. X est un ensemble quelconque et $\mathcal{B}(X, \mathbb{R})$ désigne l'espace des applications définies sur X à valeurs réelles et bornées. On le munit de la norme $\|.\|_{\infty}$ (celle du sup). Vérifier rapidement que c'est un espace complet

2. On définit sur l'espace des suites réelles bornées la norme

$$||u||_{\infty} = \sup_{n} |u_n|.$$

Justifier que c'est un espace de Banach.(utiliser 1.)

3. F est l'espace des suites à support fini (c'est à dire telles que $\{u(I\!\!N)\}$ soit un ensemble fini) et on y définit la norme:

$$||u||_1 = \sum_{u_n \in u(\mathbb{N})} |u_n|.$$

On considère l'application $f: F \to \mathbb{R}$ définie par $f(u) = \sum_{u_n \in u(\mathbb{N})} u_n$.

- a. Montrer que f est linéaire.
- b. Etudier la continuité de f avec respectivement les normes $\|.\|_{\infty}$ et $\|.\|_{1}$. Dans le (ou les) cas où f est continue, calculer $\|f\|$.

Exercice 5: Soit $A: \mathbb{R}^n \to \mathbb{R}^m$ une application linéaire dont la matrice dans les bases canoniques est

$$(a_{ij})_{1 \le i \le m, \ 1 \le j \le n}.$$

On considère successivement les normes:

- i) $\|.\|_1 \operatorname{sur} \mathbb{R}^n \operatorname{et} \|.\|_{\infty} \operatorname{sur} \mathbb{R}^m$.
- ii) $\|.\|_1 \operatorname{sur} \mathbb{R}^m \operatorname{et} \|.\|_{\infty} \operatorname{sur} \mathbb{R}^n$.

Calculer ||A|| dans le premier cas, la majorer dans le second cas.

Exercice 6: Soit A l'aplication de \mathbb{R}^2 dans $\mathcal{L}(\mathbb{R}^2, \mathbb{R}^2)$ qui à tout vecteur $(x, y) \in \mathbb{R}^2$ fait correspondre l'application linéaire A(x, y) représentée dans la base canonique par la matrice:

$$\left(\begin{array}{cc} x & x \\ x & -y^2 \end{array}\right)$$

Soit B l'application de \mathbb{R}^2 dans \mathbb{R}^2 définie par B(x,y)=(-y,x).

Calculer $C = A \circ B$ et φ définie par: $\varphi(x,y) = A(x,y)[B(x,y)]$. Comparer les résultats obtenus.

Exercice 7: On munit l'espace $E = \mathcal{C}([a, b], \mathbb{R})$ de la norme

$$||f|| = \int_a^b |f(x)| dx.$$

- 1. Vérifier que c'est bien une norme.
- 2. Montrer que E muni de cette norme n'est pas un espace de Banach. On pourra se placer dans le cas [a,b] = [0,1] et considérer la suite de fonctions $(f_n)_n$ définies par $f_n(x) = 0$ si $x \notin]1/2 1/(n+2), 1/2 + 1/(n+2)[$ et le graphe suivant. On vérifiera que c'est une suite de Cauchy non convergente dans E.