Universite Mohammed V- Agdal

Faculté des Sciences

Département de Mathématiques

& Informatique- Rabat

Année Universitaire 2005/06 Session Automne-hiver Module de calcul différentiel

Série # 2

Exercice 1:

On se place dans l'espace vectoriel \mathbb{R}^n .

- 1) Soit N_1 la norme $x=(x_1,...,x_n) \mapsto N_1(x)=\sum_{i=1}^n |x_i|$. Montrer que N_1 est différentiable en un point $a=(a_1,...,a_n)$ si et seulement si $\forall i \in \{1,...,n\}$, $a_i \neq 0$.
- 2) Soit N_{∞} la norme $x=(x_1,...,x_n) \mapsto N_{\infty}=\sup_{1\leq i\leq n}|x_i|$. Montrer que N_{∞} est différentiable en un point $a=(a_1,...,a_n)$ si et seulement s'il existe $i_0\in\{1,2,...,n\}$ tel que, pour tout $i\neq i_0, |a_i|<|a_{i_0}|$. Calculer dans ce cas $N_{\infty}'(a)$.

Exercice 2: Dérivée d'un quotient

Soient E un espace vectoriel normé, U un ouvert de E, a un point de U, f et g deux applications de U dans $I\!\!R$ différentiables au point a. On suppose que g ne s'annule pas sur U. On définit une application $g: U \to I\!\!R$ en posant, pour $x \in U$

$$q(x) = \frac{f(x)}{g(x)}.$$

Montrer que q est différentiable au point a et donner sa différentielle Dq(a).

Exercice 3:

Soit E un espace vectoriel réel muni d'un produit scalaire $(x,y) \mapsto (x \mid y)$ et de la norme associée $||x|| = (x \mid x)^{1/2}$. Soit u un endomorphisme continu, autoadjoint de E, c'est à dire vérifiant, pour tous x et $y \in E$, $(x \mid u(y)) = (u(x) \mid y)$. Soit $f : E \setminus \{0\} \to \mathbb{R}$ l'application définie par

$$f(x) = \frac{(x \mid u(x))}{(x \mid x)}.$$

- 1) Montrer que l'application de E dans \mathbb{R} , $x \mapsto (x \mid u(x))$ est différentiable sur E. Calculer sa différentielle.
- 2)a) Montrer que f est différentiable sur $E \setminus \{0\}$ et calculer sa différentielle Df.
- 2)b) Montrer qu'un élément non nul a de E vérifie Df(a) = 0 si et seulement si a est un vecteur propre de u.

Exercice 4: Application point fixe

Soient E et F deux espaces de Banach et λ un réel vérifiant $0 < \lambda < 1$. Soit $\phi : ExF \to F$ une application qui vérifie, pour tout $(x, y, z) \in ExFxF$,

$$\|\phi(x,y) - \phi(x,z)\| \le \lambda \|y - z\|.$$

- 1) Montrer que pour tout $x \in E$, il existe un unique élément de F, noté f(x), tel que $\phi(x, f(x)) = f(x)$.
- 2) On suppose désormais l'application ϕ différentiable sur ExF et on note $\phi_1'(x,y)$ et $\phi_2'(x,y)$ ses différentielles partielles au point $(x,y) \in ExF$.
- a) Soit (a, b) un point de ExF. Montrer que $\|\phi_2'(a, b)\| \leq \lambda$. En déduire que l'application $\mathrm{id}_F \phi_2'(a, b)$ est un élément inversible de $\mathcal{L}(F, F)$.
- b) On suppose, dans cette question, que l'application f est différentiable au point a. Calculer f'(a).

Exercice 5:

Soit E un espace vectoriel normé, I =]a, b[un intervalle ouvert de $I\!\!R$, et $f: I \to E$ une application. On suppose que f admet en tout point x de I une dérivée à droite $f_d'(x)$. Montrer que si l'application $x \longmapsto f_d'(x)$ est continue en un point $x_0 \in I$, alors f est différentiable en x_0 .(On pourra considérer l'application $g: I \to E$, $g(x) = f(x) - f_d'(x_0)(x - x_0)$, et lui appliquer le théorème des accroissements finis).

Exercice 6:

Soit f une fonction à valeurs dans un espace de Banach E, de classe \mathcal{C}^{∞} dans un intervalle ouvert I. On pose

$$\begin{cases} g(x,y) = \frac{f(x) - f(y)}{x - y} \text{ si } x \neq y \\ g(x,x) = f'(x). \end{cases}$$

- 1) Montrer que g est continue dans IxI, et de classe C^1 dans $IxI \setminus \bigcup_{x \in U} \{(x, x)\}.$
- 2) Si $f''(x_0)$ existe pour $x_0 \in I$, montrer que g est différentiable en (x_0, x_0) . (Appliquer le théorème des accroissements finis à la fonction

$$f(x) - xf'(x_0) - \frac{(x - x_0)^2}{2}f''(x_0)$$