

M28 - Mesures et Intégration:

(2016 - 2017)

Chapitre I: Espaces mesurables	
Allal GHANMI	-

Espaces mesurables

1.1 Clans (Algébres)

Dans toute la suite X désignera un ensemble non vide. On notera par $\mathcal{P}(X)$ l'ensemble de parties de X.

Définition 1.1.1. Une classe $\mathscr C$ de parties de X est appelée clan (ou algèbre de Boole ou tout simplement algèbre) si:

- 1. $\emptyset \in \mathscr{C}$.
- 2. \mathscr{C} est stable par passage au complémentaire dans X: si $A \in \mathscr{C}$, alors $A^{\complement} = X \setminus A \in \mathscr{C}$.
- 3. \mathscr{C} est stable par réunion: si $A, B \in \mathscr{C}$, alors $A \cup B \in \mathscr{C}$.

Exemples 1.1.2. Il y a beaucoup d'algèbres sur un ensemble non vide donné X.

- La plus grosse est l'algèbre $\mathcal{P}(X)$.
- La plus petite est $\{\emptyset, X\}$.
- Soit $A \subset X$. La plus petite algèbre contenant A est la collection constituée de \emptyset , A, A^{\complement} et X.
- L'intersection de deux algèbres C_1 et C_2 sur X, définie par

$$\mathscr{C}_1 \cap \mathscr{C}_2 := \{ A \subset X; A \in \mathscr{C}_1 \text{ et } A \in \mathscr{C}_2 \},$$

est encore une algèbre sur X. Plus généralement, L'intersection d'une famille quelconque d'algèbres sur X est une algèbre sur X.

Remarque 1.1.3. *Soit C un clan de parties de X*. *Les propriétés suivantes sont immédiates:*

- 1. $X \in \mathscr{C}$.
- 2. \mathscr{C} est stable par différence non symétrique: si $A, B \in \mathscr{C}$, alors $A \setminus B \in \mathscr{C}$.
- 3. \mathscr{C} est stable par différence symétrique: si A, $B \in \mathscr{C}$, alors $A\Delta B := (A \setminus B) \cup (B \setminus A) \in \mathscr{C}$.

- 4. \mathscr{C} est stable par réunion finie: si $A_1, \dots, A_n \in \mathscr{C}$, alors $A_1 \cup \dots \cup A_n \in \mathscr{C}$.
- 5. \mathscr{C} est stable par intersection finie: $si\ A_1, \cdots, A_n \in \mathscr{C}$, alors $A_1 \cap \cdots \cap A_n \in \mathscr{C}$.

Il y a d'autres systèmes équivalents à l'ensemble des axiomes dans la définition d'une algèbre. On cite par exemple la définition équivalente suivante:

Définition 1.1.4. $\mathscr{C} \subset \mathcal{P}(X)$ est un clan sur X si et seulement si

- 1. $X \in \mathcal{C}$ non vide.
- 2. *C* est stable différence non symétrique.
- 3. *C* est stable par réunion.

1.2 Tribus (σ -Algébres)

Définition 1.2.1. Une collection \mathscr{C} de parties de X, $\mathscr{C} \subset \mathcal{P}(X)$, est dite tribu (ou σ -algèbre ou encore σ -algèbre de Boole) sur X si elle possède les propriétés suivantes:

- 1. & est non vide.
- 2. C est stable par passage au complémentaire
- 3. *C* est stable par réunion au plus dénombrable.

Exemples 1.2.2. L'ensemble des tribus sur X est évidemment non vide. Les exemples des algèbres sur X cités précédemment sont aussi des σ -algèbres sur X:

- La plus grosse est la tribu $\mathcal{P}(X)$.
- La plus petite est $\{\emptyset, X\}$.
- Soit $A \subset X$, la plus petite tribu contenant A est $\{\emptyset, A, A^{\complement}, X\}$..

Remarque 1.2.3. Toute tribu (σ -algèbre) sur X est un clan (algèbre) sur X. En revanche il existe des algèbres qui ne sont pas des tribus. Un des contre-exemples est donné par

$$\mathscr{C} = \{ A \in \mathcal{P}(X); A \text{ ou } A^{\complement} = X \setminus A \}$$

où X est un ensemble non vide et infini.

Définition 1.2.4. Le couple $(X; \mathcal{C})$ formé d'un ensemble non vide X et d'une tribu \mathcal{C} sur X est dit espace mesurable. Les éléments de \mathcal{C} sont appelés les parties \mathcal{C} -mesurables de X ou simplement mesurables s'il n'y a pas d'ambiguïté sur le choix de la tribu \mathcal{C} .

Remarque 1.2.5. *Soit* $(X; \mathcal{M})$ *un espace mesurable. Alors, on a les propriétés suivantes:*

- 1. \mathcal{M} contient nécessairement les parties \emptyset et X.
- 2. *M* est stable par intersection dénombrable.
- 3. *M* est stable par différence non symétrique et par différence symétrique.

Comme dans le cas des clans, il y a d'autres systèmes équivalents à l'ensemble des axiomes définissant une tribu. Par exemple:

Définition 1.2.6. $\mathscr{C} \subset \mathcal{P}(X)$ est une tribu sur X si et seulement si

- 1. $X \in \mathcal{C}$ non vide.
- 2. *C* est stable par différence non symétrique.
- 3. *C* est stable par réunion au plus dénombrable.

1.3 Construction des tribus

1.3.1 Constuction 1: Tribu trace (induite)

Soit *M* une tribu de parties de *X*. Pour toute partie fixée *C* non vide de *X*, on définit

$$\mathcal{M}_C := \{ A \cap C; A \in \mathcal{M} \}.$$

Alors \mathcal{M}_C est une tribu sur C, appelée tribu induite par \mathcal{M} (ou encore tribu trace de \mathcal{M}) sur C.

Attention: Ici, il faut prendre le complémentaire dans *C*.

1.3.2 Constuction 2: Tribu image réciproque

Soient X et Y deux ensembles non vides et $f: X \longrightarrow Y$ une application donnée. Si \mathcal{M}_Y est une tribu sur Y, alors $f^{-1}(\mathcal{M}_Y) = \{f^{-1}(B); B \in \mathcal{M}_Y\}$ est une tribu sur X.

Pour la vérification, on utilise les propriétés suivants

$$^{\mathbb{C}}(f^{-1}(A)) = f^{-1}(^{\mathbb{C}}A); \quad f^{-1}(\cup_{i \in I}A_i) = \cup_{i \in I}f^{-1}(A_i)$$

ainsi que $f^{-1}(Y) = X$.

1.3.3 Constuction 3: Intersection de tribus

La plus part des tribus "intéressantes" sur *X* sont construites en utilisant le résultat que toute intersection (dénombrable ou non) de tribus de parties de *X* est encore une tribu de parties de *X*.

Proposition 1.3.1. Soit \mathcal{F} une famille de parties de X. La tribu

$$\bigcap_{\mathcal{M} \text{ tribu de } X} \mathcal{M} =: \sigma(\mathcal{F})$$

$$\mathcal{M} \supset \mathcal{F}$$

est la plus petite tribu sur X contenant \mathcal{F} .

Définition 1.3.2. $\sigma(\mathcal{F} \text{ est dite la tribu sur } X \text{ engendrée par } \mathcal{F}.$

Proposition 1.3.3. 1) Soient \mathscr{C} et \mathscr{C}' deux collections de parties de X. Alors,

- i) $Si \mathscr{C} \subset \mathscr{C}'$, alors $\sigma(\mathscr{C}) \subset \sigma(\mathscr{C}')$ (en particulier $Si \mathscr{C}'$ est une tribu, on a $\sigma(\mathscr{C}) \subset \mathscr{C}'$).
- ii) On a $\sigma(\mathscr{C}) \subset \sigma(\mathscr{C}') \iff \mathscr{C} \subset \sigma(\mathscr{C}')$.
- $\textit{iii)} \ \ \sigma(\mathscr{C}) = \sigma(\mathscr{C}') \Longleftrightarrow \mathscr{C} \subset \sigma(\mathscr{C}') \ \textit{et} \ \mathscr{C}' \subset \sigma(\mathscr{C}).$

2) Si $f: X \longrightarrow Y$ est une application et \mathscr{C}_Y une collection de parties de Y, alors

$$\sigma(f^{-1}(\mathscr{C}_Y)) = f^{-1}(\sigma(\mathscr{C}_Y)).$$

Remarque 1.3.4. On peut avoir $\sigma(\mathscr{C}) = \sigma(\mathscr{C}')$ pour deux classes différentes \mathscr{C} et \mathscr{C}' . Par exemple, on a $\sigma(\{A\}) = \sigma(\{A^{\complement}\})$.

Remarque 1.3.5 (Emboitage des Tribus). On rencontrera souvent la situation du cas particulier de la proposition précédente: on aura deux tribus \mathcal{M} et \mathcal{M}' sur le même ensemble X et on voudra montrer que $\mathcal{M} \subset \mathcal{M}'$. Si on sait que \mathcal{M} est engendrée par une collection \mathcal{C} (autrement dit $\sigma(\mathcal{C}) = \mathcal{M}$), il suffira alors de prouver que $\mathcal{C} \subset \mathcal{M}'$.

1.3.4 Constuction 4: Tribu produit

Soient $(X; \mathcal{M}_X)$ et $(Y; \mathcal{M}_Y)$ deux espaces mesurables.

- La tribu produit de \mathcal{M}_X et \mathcal{M}_Y est la tribu sur le produit cartésien $X \times Y$, noté $\mathcal{M}_X \otimes \mathcal{M}_Y$, engendré par les parties $A \times B$ où $A \in \mathcal{M}_X$ et $B \in \mathcal{M}_Y$.
- Le couple $(X \times Y; \mathcal{M}_X \otimes \mathcal{M}_Y)$ est dit espace mesurable produit des espaces $(X; \mathcal{M}_X)$ et $(Y; \mathcal{M}_Y)$.

Remarque 1.3.6. Le produit cartésien des deux tribus, $\mathcal{M}_X \times \mathcal{M}_Y$, n'est pas une tribu sur $X \times Y$ (La stabilité par réunion dénombrable tombe en défaut). Mais on a bien

$$\mathcal{M}_X \otimes \mathcal{M}_Y = \sigma(\mathcal{M}_X \times \mathcal{M}_Y).$$

1.4 Tribu de Borel

La notion de tribu borélienne est liée à la structure topologique de l'ensemble de base.

Définition 1.4.1 (Topologie). On appelle espace topologique tout couple $(X; \mathcal{O})$ formé d'un ensemble non vide X et d'une famille \mathcal{O} de parties de X possédant les propriétés

- 1. \mathscr{O} contient les parties \varnothing et X.
- 2. \mathcal{O} est stable par intersections finies.
- 3. *©* est stable par réunions quelconques.

Les éléments de \mathscr{O} sont les ouverts de la topologie. Les complémentaires des ouverts sont les fermés de la topologie.

Topologie usuelle sur \mathbb{R} :

La topologie dite usuelle sur \mathbb{R} est donnée par la collection $\mathscr{T}_{\mathbb{R}}$ des parties de \mathbb{R} qui sont unions d'intervalles ouverts]a,b[avec $a\in\mathbb{R}\cup\{-\infty\}$ et $b\in\mathbb{R}\cup\{+\infty\}$. Cette topologie usuelle, un ensemble $O\subset\mathbb{R}$ est ouvert si

$$\forall x \in O, \exists b \in O, x \in]a,b[\subset O.$$

Si O est un ouvert de \mathbb{R} , on considère

$$\mathcal{I} = \{(\rho, r) \in \mathbb{Q} \times \mathbb{Q}_+^*;]\rho - r, \rho + r[\subset O\}.$$

Alors \mathcal{I} est dénombrable (elle s'injecte dans $\mathbb{Q} \times \mathbb{Q}$) et

$$O = \bigcup_{(\rho,r)\in\mathcal{I}}]
ho - r,
ho + r[.$$

Ainsi tout ouvert de \mathbb{R} peut s'écrire comme réunion au plus denombrable d'intervalles ouverts (on peut même se limiter à des intervalles à extrémités rationnelles).

Tribu de Borel

Définition 1.4.2. Soit $(X; \mathcal{O})$ un espace topologique. La tribu de parties de X engendrée par la famille \mathcal{O} est appelée tribu de Borel ou encore tribu des boréliens de X.

Remarque 1.4.3.

- On note $\mathfrak{B}(X)$ la tribu borélienne de l'espace topologique $(X; \mathcal{O})$, s'il n'y a pas d'ambiguïté sur le choix de la topologie mise sur X.
- Les ouverts et les fermés, les intersections dénombrables d'ouverts, les réunions dénombrables de fermés sont des éléments de $\mathfrak{B}(X)$, dits des boréliens de X.

Théorème 1.4.4. Soit $\mathfrak{B}(\mathbb{R}) := \sigma(\mathscr{T}_{\mathbb{R}})$ la trbu borélienne de \mathbb{R} , où $\mathscr{T}_{\mathbb{R}}$ est la collection de parties de \mathbb{R} qui sont unions d'intervalles ouverts. Alors, $\mathfrak{B}(\mathbb{R})$ est aussi la tribu engendrée par l'un des classes suivantes

- 1. La collection $\mathcal{J}_1 := \{ |a, +\infty[; a \in \mathbb{R} \} \}$.
- 2. La collection $\mathcal{J}_2 := \{ |a, +\infty[; a \in \mathbb{Q} \} \}$.
- 3. La collection $\mathcal{J}_3 := \{[a, +\infty[; a \in \mathbb{R}\}.$
- 4. La collection $\mathcal{J}_4 := \{[a, +\infty[; a \in \mathbb{Q}\}.$
- 5. La collection $\mathcal{J}_5 := \{ [a,b[;a,b \in \mathbb{R}] \} \}$ des intervalles ouverts bornés de \mathbb{R} .

Preuve:

• Pour tout k = 1, 2, 3, 4, 5, on a $\mathcal{J}_k \subset \mathcal{T}_{\mathbb{R}}$ et donc

$$\sigma(\mathscr{J}_k) \subset \sigma(\mathscr{T}_{\mathbb{R}}) =: \mathfrak{B}(\mathbb{R}).$$

• Il est clair que $\mathcal{J}_2 \subset \mathcal{J}_1 \subset \mathcal{T}_\mathbb{R} \supset \mathcal{J}_3 \supset \mathcal{J}_4$. Il en résulte que

$$\sigma(\mathscr{J}_2) \subset \sigma(\mathscr{J}_1) \subset \sigma(\mathscr{T}_\mathbb{R}) =: \mathfrak{B}(\mathbb{R}) \supset \sigma(\mathscr{J}_3) \supset \sigma(\mathscr{J}_4).$$

La preuve sera achevée en montrant

$$\mathfrak{B}(\mathbb{R}) := \sigma(\mathscr{T}_{\mathbb{R}}) \subset \sigma(\mathscr{J}_2)$$
 et $\mathfrak{B}(\mathbb{R}) := \sigma(\mathscr{T}_{\mathbb{R}}) \subset \sigma(\mathscr{J}_4)$

Pour ceci, il suffit alors de vérifier que

$$\mathscr{T}_{\mathbb{R}} \subset \sigma(\mathscr{J}_2)$$
 et $\mathscr{T}_{\mathbb{R}} \subset \sigma(\mathscr{J}_4)$.

Montrons par exemple que $\mathscr{T}_{\mathbb{R}} \subset \sigma(\mathscr{J}_2)$: Comme tout ouvert de \mathbb{R} est une réunion au plus denombrable d'intervalles de la forme]a,b[avec a < b et $a,b \in \mathbb{R} \cup \{-\infty,+\infty\}$, il suffit alors de montrer que ces derniers sont dans $\sigma(\mathscr{J}_2)$.

- Pour tout $a, b \in \mathbb{R} \cup \{-\infty, +\infty\}$ avec a < b, il existe deux suites (a_n) et (b_n) dans \mathbb{Q} vérifiant
 - (a_n) est décroissante et (b_n) est croissante avec $a < a_n < b_n < b$
 - $a_n \rightarrow a$ et $b_n \rightarrow b$

telles que

$$]a,b[=\bigcup_{n}]a_{n},b_{n}[$$

• Or on a

$$]a_n,b_n[=]-\infty,b_n[\cap\left(\overbrace{\bigcap_{k\geq 1}]-\infty,a_n+rac{1}{k}[}
ight)^{\complement}\in\sigma(\mathscr{J}_2).$$

Remarques 1.4.5. • $\mathcal{T}_{\mathbb{R}} \subset \sigma(\mathcal{J}_4)$ s'établit de manière analogue.

- ullet Une démonstration directe de $\mathscr{T}_{\mathbb{R}}\subset\sigma(\mathscr{J}_1)=\mathscr{M}_1$ est la suivante
 - Par construction, on a $]a, +\infty[\in \mathcal{J}_1 \subset \mathcal{M}_1 \text{ pour tout } a \in \mathbb{R}.$
 - Par intersection dénombrables d'éléments de \mathcal{M}_1 et passage au complémentaire, on a aussi

$$]-\infty,a[=([a,+\infty[)^{\complement}=\left(\bigcap_{n\in\mathbb{N}}]a-\frac{1}{n},+\infty[\right)^{\complement}\in\mathcal{M}_{1}.$$

- Comme intersection de deux éléments de \mathcal{M}_1 , on a

$$]a,b[=]-\infty,b[\cap]a,+\infty[\in \mathcal{M}_1; \quad a < b.$$

On conclut alors \mathcal{M}_1 contient tous les ouverts de \mathbb{R} et $\mathcal{M}_1 \supset \mathfrak{B}(\mathbb{R})$.

• La preuve de $\mathscr{T}_{\mathbb{R}} \subset \sigma(\mathscr{J}_5)$, est immédiate du fait que tout ouvert est réunion au plus dénombrable d'intervalles ouverts bornés (voir le rappel topologique).

1.5 Exercices supplémentaires et devoir à rendre

Exercices supplémentaires

Exercice 1 Soient X et Y deux ensembles non vides et f une application de X dans Y. On définit les applications $f_d: \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$ et $f_r^{-1}: \mathcal{P}(Y) \longrightarrow \mathcal{P}(X)$ par

$$f_d(A) = \{f(x); x \in A\} \text{ et } f_r^{-1}(B) = \{x; f(x) \in B\}.$$

1. Montrer que f_d et f_r^{-1} vérifient les formules suivantes (dites de Hausdorff):

(a)
$$f_r^{-1}\left(\bigcup_{i\in I} B_i\right) = \bigcup_{i\in I} f_r^{-1}(B_i);$$

(b) $f_r^{-1}\left(\bigcap_{i\in I} B_i\right) = \bigcap_{i\in I} f_d(B_i);$

(c)
$$f_r^{-1}(A^c) = (f_r^{-1}(A_i))^c$$
.

$$(a')$$
 $f_d\left(\bigcup_{i\in I}A_i\right)=\bigcup_{i\in I}f_d\left(A_i\right);$

$$(b')$$
 $f_d\left(\bigcap_{i\in I}A_i\right)\subset\bigcap_{i\in I}f_d\left(A_i\right).$

2. On suppose que f est bijective. Ecrire f_r^{-1} en terme de f^{-1} .

Exercice 2 Soit X un ensemble non vide, et $(A_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites de parties de X. Montrer que

$$\left(\bigcup_{n\in\mathbb{N}}A_n\right)\setminus\left(\bigcup_{n\in\mathbb{N}}B_n\right)\subset\bigcup_{n\in\mathbb{N}}\left(A_n\setminus B_n\right).$$

Exercice 3 Pour une collection $(A_n)_{n\geq 1}$ de parties de X, on définit

$$\liminf A_n := \bigcup_{n>1} \left(\bigcap_{k>n} A_k \right) \quad \text{et} \quad \limsup A_n := \bigcap_{n>1} \left(\bigcup_{k>n} A_k \right).$$

- 1. Montrer que $\lim \inf A_n \subset \lim \sup A_n$.
- 2. Montrer que $\liminf A_n = \limsup A_n$ lorsque $(A_n)_{n\geq 1}$ est croissante (décroissante).
- 3. Montrer que $(\limsup A_n)^c = \liminf (A_n^c)$ et $(\liminf A_n)^c = \limsup (A_n^c)$.

Exercice 4 Soient A et B deux parties non vides d'un ensemble non vide X. Déterminer la tribu engendrée par la collection $\{A, B\}$.

Exercice 5: Soit n un entier, $n \in \mathbb{N}^*$, et $\mathcal{M}_n = \sigma(\{I_n^k; k = 0, 1, 2, \dots, 2^n - 1\})$ la tribu sur [0, 1[engendrée par les

$$\left\{ egin{array}{l} I_n^0 := \ I_n^0 := \ I_n^k := \ I$$

Montrer que la suite $(\mathcal{M}_n)_n$ est croissante mais que leur union n'est pas une tribu sur]0,1[.

Exercice 6 Soit *X* un ensemble non vide et considérons les collections

 $\mathscr{C}:=\{A\subset X:A \text{ ou } A^c \text{ est fini}\} \text{ et } \mathscr{M}:=\{A\subset X:A \text{ ou } A^c \text{ est fini ou dénombrable}\}.$

- 1. Montrer que \mathscr{C} est un clan sur X. Est-elle une tribu sur X?
- 2. Montrer que \mathcal{M} est une tribu sur X.

Exercice 7 (*Tribu engendrée par une partition*): Soit X un ensemble non vide.

- 1. Soit $(A_i)_{i \in I}$ une partition dénombrable de X. Décrire la tribu engendrée par cette partition.
- 2. Montrer que toute tribu finie de parties de *X* est la tribu engendrée par une partition finie de *X*.
- 3. Montrer que si *X* est dénombrable, toute tribu sur *X* est engendrée par une partition.

Exercice 8 (*Une tribu infinie est non dénombrable*): Montrer que toute tribu infinie \mathcal{M} sur un ensemble (infini) X est non dénombrable.

Devoir à rendre:

Exercice 1 (*Caractérisation de la tribu engendrée*). Soient \mathcal{A} et \mathcal{C} deux collections de parties d'un ensemble E.

1. On note par $\mathcal Z$ l'ensemble des parties de $\mathcal P(E)$ stables par différence et stables par union dénombrable disjointe. Montrer qu'il existe $\mathcal D \in \mathcal Z$ tel que $\mathcal C \subset \mathcal D$ et :

$$A \in \mathcal{Z}; \quad C \subset A \Longrightarrow \mathcal{D} \subset A.$$

Dans la suite, on note toujours \mathcal{D} cette partie de $\mathcal{P}(E)$. On suppose maintenant que \mathcal{C} est stable par intersection finie et que $E \in \mathcal{C}$.

- 2. Pour $A \in \mathcal{P}(E)$, on note $\mathcal{D}_A = \{D \in \mathcal{D} \mid \text{tel que } A \cap D \in \mathcal{D}\}.$
 - (a) Soit $A \in \mathcal{P}(E)$. Montrer que \mathcal{D}_A est stable par union dénombrable disjointe et stable par différence.
 - (b) Soit $A \in \mathcal{C}$. Montrer que $\mathcal{C} \subset \mathcal{D}_A$. En déduire que $\mathcal{D}_A = \mathcal{D}$.
 - (c) Soit $A \in \mathcal{D}$. Montrer que $\mathcal{D}_A = \mathcal{D}$. En déduire que \mathcal{D} est stable par intersection finie.
- 3. Montrer que \mathcal{D} est une tribu. En déduire que \mathcal{D} est la tribu engendrée par \mathcal{C} .

Exercice 2 (Tribu borélienne de \mathbb{R}^2).

On note T la tribu (sur \mathbb{R}^2) engendrée par $\{A \times B; A; B \in \mathcal{B}(\mathbb{R})\}$. L'objectif est de montrer que

$$T = \mathcal{B}(\mathbb{R}^2).$$

- 1. Montrer que tout ouvert de \mathbb{R}^2 est réunion au plus dénombrable de produits d'intervalles ouverts de \mathbb{R} . [S'inspirer d'une Preuve analogue faite pour \mathbb{R} au lieu de \mathbb{R}^2 .] En déduire que $\mathcal{B}(\mathbb{R}^2) \subset T$.
- 2. Soit A un ouvert de \mathbb{R} et $T_1 = \{B \in \mathcal{B}(\mathbb{R}); A \times B \in \mathcal{B}(\mathbb{R}^2)\}$. Montrer que T_1 est une tribu (sur \mathbb{R}) contenant les ouverts (de \mathbb{R}). En déduire que $T_1 = \mathcal{B}(\mathbb{R})$.
- 3. Soit $B \in \mathcal{B}(\mathbb{R})$ et $T_2 = \{A \in \mathcal{B}(\mathbb{R}); A \times B \in \mathcal{B}(\mathbb{R}^2)\}$. Montrer que $T_2 = \mathcal{B}(\mathbb{R})$.
- 4. Montrer que $T \subset \mathcal{B}(\mathbb{R}^2)$ (et donc que $T = \mathcal{B}(\mathbb{R}^2)$).