Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Groupe d'Analyse Numérique et Optimisation Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc Tel et fax +(37)775471

Pages web: http://www.fsr.ac.ma/ANO/

Filières : SMI - SM et SMP - SMC Module : \mathbf{M}_6

NOTES de cours d'Analyse II

EQUATIONS DIFFERENTIELLES:

PAR

Ali ALAMI-IDRISSI Saïd EL HAJJI et Samir HAKAM

Groupe d'Analyse Numérique et Optimisation

Année 2005-2006

I- Equations différentielles du premier ordre

(1) Définition

Soit $f:(u,v) \to f(u,v)$ une application réelle de deux variables réelles définies sur un ensemble D de IR^2 .

Soit : $\varphi : x \to \varphi(x)$ une fonction réelle définie et dérivable sur un intervalle $[t_o, t_1]$ dont l'image par l'application $x \to (x, \varphi(x))$ est contenue dans D.

On dit que la fonction φ est solution de l'équation différentielle du premier ordre suivante (on dit aussi intégrale de l'équation) si elle vérifie sur l'intervalle $[t_o, t_1]$ l'égalité :

(1)
$$\varphi'(x) = f(x, \varphi(x))$$

L'équation (1) est dite linéaire si f est de la formesuivante :

$$f(u,v) = v.A(u) + B(v)$$
, où A et B sont des fonctions réelles.

Exemple:

Soit l'équation : y' = f(x), f étant une fonction continue sur un intervalle de IR, alors la solution de l'équation est donnée par :

$$y(x) = \int_{a}^{X} f(t)dt + c$$

A) Equations linéaires :

Une équation différentielle du premier ordre linéaire est de la forme suivante :

$$y' + a(x)y = b(x) \tag{1}$$

où a et b sont des fonctions continues sur un intervalle ouvert I. L'équation sans second membre associée à (1) est l'équation :

$$y' + a(x)y = 0 (2)$$

a/ Résolution de l'équation sans second membre :

Soit y une solution non nulle de l'équation (2), alors on a:

$$\frac{\mathbf{y}''}{\mathbf{y}} = -a(x)$$

$$Log|y| = -\int a(t)dt + cte$$
, soit $A(x) = \int a(t)dt$

donc

$$y = ke^{-A(x)}$$
, où $k \in IR$

Théorème: Soit I un intervalle ouvert de IR, $a: I \rightarrow IR$ une fonction continue, $A: I \rightarrow IR$ une primitive de a. L'ensemble des solutions de l'équation différentielle :

$$y' + a(x)y = 0 (2)$$

est l'ensemble des fonctions de la forme :

$$\varphi(x) = Ke^{-A(x)}$$
 $où$ $K \in IR$.

Preuve : Soit $\varphi: I \to IR$ dérivable, posons:

$$k(x) = \varphi(x) e^{A(x)}$$
, on a:

$$k'(x) = \left[\varphi'(x) + A'(x) \; \varphi(x) \right] e^{A(x)} = \left[\varphi'(x) + a(x) \; \varphi(x) \right] e^{A(x)}$$

$$\varphi$$
 est solution de $(2) \Leftrightarrow k'(x) = 0, x \in I \Leftrightarrow k(x) = cte = k$ $\Leftrightarrow \varphi(x) = k e^{-A(x)}$

Exemple:

$$y' + x^3y = 0$$

$$\varphi(x) = Ke^{-\frac{x^4}{4}}, K \in IR$$

Exercices : Résoudre les équations :

$$y' - 2xy = 0$$
, $y' + y \cos x = 0$, $y' \sqrt{1 - x^2} = y$

Equations différentielles du peremier ordre à coefficients constants sans second membre:

$$y' + ay = 0$$
 , a constante réelle.Alors on a: $y = Ke^{-ax}, K \in IR$

b/ Résolution de l'équation avec second membre

Théorème: Soit I un intervalle ouvert de IR, $a:I\to IR$ et $b:I\to IR$ deux fonctions continues et φ_1 une solution de l'équation :

(1)
$$y'+a(x)y = b(x)$$
.

Pour qu'une fonction dérivable $\varphi: I \to IR$ soit solution de (1) il faut et il suffit que $\varphi - \varphi_1$ soit solution de l'équation sans second membre associée à (1).

Preuve : On a : $\varphi'_1(x) + a(x)\varphi_1(x) = b(x)$, $\forall x \in I$ φ est solution de (1)

$$\varphi'(x) + a(x)\varphi(x) = b(x)$$

par suite:

 \Leftrightarrow

$$\varphi'(x) - \varphi'_1(x) + a(x)[\varphi(x) - \varphi_1(x)] = 0$$

Commentaire : On dit que la solution générale de (1) est égale à la somme d'une solution particulière de (1) et de la solution générale de (2).

Résolution de (1) par la méthode de la variation de la constante :

On peut procéder de la façon suivante pour la recherche de la solution générale de l'équation (1):

On cherche la solution sous la forme:

$$y = k(x)e^{-A(x)}$$
 , où A est une primitive de a.

$$y' = k'(x)e^{-A(x)} - k(x)a(x)e^{-A(x)} = (k'(x) - k(x)a(x))e^{-A(x)}$$
(1) \iff

$$(k'-ka)(x)e^{-A(x)} + a(x)k(x)e^{-A(x)} = b(x)$$

$$k'(x) = b(x)e^{A(x)}$$

$$k(x) = \int b(t)e^{A(t)} dt$$

Par conséquent la solution générale de (1) est :

$$y = e^{-A(x)} \int e^{A(t)} b(t) dt$$

Exemples:

(i)
$$y' + y = 3x^2 + x - 4$$
 (1)

Méthode de la recherche d'une solution particulière :

La solution générale de l'équation sans second membre est :

$$y = Ke^{-x}, K \in IR$$

Cherchons une solution de (1) sous la forme :

$$y_1(x) = \alpha x^2 + \beta x + \gamma$$

après calcul on trouve $\alpha = 3$, $\beta = -5$, $\gamma = 1$ La solution générale de (1) est

$$y = 3x^2 - 5x + 1 + Ke^{-x}, K \in IR$$

Méthode de la variation de la constante

Posons
$$y = ke^{-x} \rightarrow y' = k'e^{-x} - ke^{-x} = (k'-k)e^{-x}$$

$$(k'-k)e^{-x} + ke^{-x} = 3x^2 + x - 4$$

$$k'e^{-x} = 3x^2 + x - 4$$

$$k' = (3x^2 + x - 4)e^x$$

$$k(x) = (3x^2 + 5x + 1)e^x + K, K \in IR$$

(ii)
$$y' - \frac{3}{x}y = x$$
, on prend $I =]-\infty, 0[$ ou $]0 + \infty[$

Méthode de la recherche d'une solution particulière :

L'équation sans second membre a pour solution

$$y = Ke^{\int \frac{3}{t}dt} = Ke^{3logx} = Kx^3, K \in IR$$

cherchons y_1 sous la forme λx^2 , on obtient:

$$2\lambda x - \frac{3\lambda x^2}{x} = x \iff \lambda = -1$$
 ce qui donne la solution:

$$y = -x^2 + K x^3, K \in IR.$$

Méthode de la variation de la constante

On pose
$$y = kx^3 \rightarrow y' = k' x^3 + 3k x^2 \rightarrow k' x^3 + 3k x^2 - 3k$$

$$x^2 = x \to k' = \frac{1}{x^2} \to k = -\frac{1}{x} + c, c \in IR \to y = -x^2 + cx^3, c \in IR$$

c/ Problème de Cauchy

Théorème: Soit I un intervalle ouvert de IR, $a:I\to IR$ et $b:I\to IR$ deux fonctions continues, $x_o\in I$ et $y_o\in IR$. Il existe une fonction et une seule telle que :

$$\begin{cases} \forall x \in I , & \varphi'(x) + a(x)\varphi(x) = b(x) \\ \varphi(x_o) = y_o \end{cases}$$
 (1)

Commentaire:

On dit que l'équation (1) admet une solution unique vérifiant la condition initiale $\varphi(x_o) = y_o$.

Preuve:

Posons
$$A(x) = \int_{x_0}^{x} a(t)dt$$

La solution générale de (1) s'écrit :

$$\varphi(x) = Ke^{-A(x)} + e^{-A(x)} \int_{x_o}^{x} e^{-A(t)}b(t)dt$$
$$\varphi(x_o) = y_o \iff K = y_o$$

Exemple: $xy' + 2y = 4x^2$, y(1) = 2La solution générale de l'équation est :

$$y = x^2 + \frac{c}{x^2}$$
, $c \in IR$

 $y=x^2+\frac{c}{x^2} \text{ , } c\in \mathit{IR}$ La solution qui convient correspond à c=1.

B) Equations remarquables du premier ordre

a/ Equations à variables séparées

Ce sont les équations qui peuvent se mettre sous la forme :

c.a.d

$$f(y)y' = g(x)$$

$$f(y) \frac{dy}{dx} = g(x)$$

$$f(y)dy = g(x)dx$$

Si F (respectivement G) est une primitive de f (respectivement g) on obtient par intégration de la relation ci-dessus nous obtenons :

$$F(y) = G(x) + cte$$

Exemple:

$$y' - (1 - \frac{2}{x^2})y = 0$$

$$\frac{dy}{y} = \left(1 - \frac{2}{x^2}\right) dx$$

$$\ln|y| = x + \frac{2}{x} + cte$$

$$y = Ke^{x + \frac{2}{x}}, K \in IR.$$

b/ Equations homogènes

Ce sont les équations de la forme : $y' = f(\frac{y}{x})$

On pose : $t = \frac{y}{x} \implies y = tx \implies y' = t'x + x$

$$t'x + t = f(t)$$

$$\frac{dt}{f(t)-t} = \frac{dx}{x}$$

Exemple: Intégrer $xy' - y = \sqrt{x^2 + y^2}$

Pour x > 0, oa:

$$y' - \frac{y}{x} = \sqrt{1 + (\frac{y}{x})^2}$$
, $t = \frac{y}{x}$

$$t'x + t = t + \sqrt{1 + t^2}$$

$$t'x = \sqrt{1 + t^2}$$

$$\ln(t + \sqrt{1 + t^2}) = \ln x + cte$$

$$t + \sqrt{1 + t^2} = Kx$$

$$\frac{y}{2} + \sqrt{1 + \frac{y^2}{x^2}} = Kx$$

$$\sqrt{x^2 + y^2} = Kx^2 - y$$

$$x^2 + y^2 = K^2 x^4 + y^2 - 2K x^2 y$$

$$y = \frac{(K^2x^2)}{2K}, K \in IR^*$$

Pour x < 0 on obtient l'équation différentielle (à résoudre en exercice):

$$y' - \frac{y}{x} = -\sqrt{1 + \left(\frac{y}{x}\right)^2}$$

c/ Equations de Bernoulli

Ce sont les équations de la forme :

 $y' + a(x)y = b(x)y^{\alpha}$ où $\alpha \in \mathbb{Z}$ a et b sont des fonctions

réelles

Si $\alpha = 0$, l'équation est linéaire

Si $\alpha = 1$, l'équation linéaire homogène

Sinon on pose $u = y^{1-\alpha}$, on obtient une équation linéaire en u.

Exercices : Intégrer les équations suivantes:

$$y' = 3\frac{y}{x} - y^3x^5$$
, $xy' + 3y = x^2y^2$

d/ Equations de Ricatti:

Ce sont les équations de la forme :

$$y' = a(x)y^2 + b(x)y + c(x)$$

où a,b,c sont des fonctions réelles définies sur un intervalle. Ces équations se ramènent à une équation de Bernoulli avec $\alpha=2$ si l'on connait une solution particulière y_1 , et ce en faisant le changement de la fonction inconnue $y=y_1+z$, nous obtenons l'équation différentielle suivante:

$$z' = a(x)z^2 + [2a(x)y_1 + b(x)]z$$

Exemple: Résoudre l'équation $y' = \frac{y^2}{x} - (2 + \frac{1}{x})y + x + 2$ en prenant $y_1 = x$ comme solution particulière.

4) Problème de Cauchy:

Théorème (admis)

Soit f une fonction définie et continue sur un rectangle $]a,b[\times]c,d[$ ayant une dérivée partielle $\frac{\partial f}{\partial v}$ continue sur le même rectangle.

Alors pour tout couple $(x_o, y_o) \in]a, b[\times]c, d[$, il existe h > 0 tel que $]xo - h, x_o + h[\subset]a, b[$ et une solution Ψ unique de l'équation :

(1)
$$y' = f(x), x \in]x_o - h, x_o + h[$$
 et $y(x_o) = y_o$.

II- Equations différentielles linéaires du second ordre à coefficients constants.

(1) Equations sans second membre.

On appelle équation différentielle linéaire du second ordre à coefficients constants sans second membre toute équation différentielle de la forme:

$$ay'' + by' + cy = 0 \tag{1}$$

où $a,b,c \in IR$, avec a non nul et y la fonction inconnue.

Le polynôme $P(r) = ar^2 + br + c$ s'appelle le polynôme caractéristique associé à (1).

Notons S l'ensemble des solutions de (1).

Proposition 1:

S est un espace vectoriel sur IR.

Preuve: Soit y et z 2 solutions de (1), $\alpha,\beta \in IR$, alors $\alpha y + \beta z$ est solution de (1) car on a:

$$a(\alpha y + \beta z)$$
" $+b(\alpha y + \beta z)$ ' $+c(\alpha y + \beta z) = \alpha a y$ " $+\alpha b y$ ' $+\alpha c + \beta a z$ " $+\beta b z$ ' $+\beta c z = 0$

Proposition 2

Soit $r \in \mathbb{C}$, alors la fonction $z: x \to e^{rx}$ est solution de (1) si et seulement si r est une racine du polynôme caractéristique P.

Preuve:

$$z'(x) = r e^{rx}, \quad z''(x) = r^2 e^{rx}$$

$$ar^2e^{rx} + bre^{rx} + ce^{rx} = 0 \iff ar^2 + br + c = 0$$

Soit $\Delta = b^2 - 4ac$, on a la proposition suivante:

Proposition 3:

On suppose $\Delta \neq 0$. Soit r_1 et r_2 les racines distinctes du polynôme caractéristique, les deux solutions $z_1: x \to e^{r_1x}$ et $z_2: x \to e^{r_2x}$ sont linéairement indépendantes.

Preuve:

Soient λ et $\mu \in \mathit{IR}$ tels que : $\lambda z_1 + \mu z_2 = 0$ c.a.d

$$\lambda z_1(x) + \mu z_2(x) = 0$$
 , $\forall x \in IR$

 $\downarrow \downarrow$

$$\lambda z'_1(x) + \mu z'_2(x) = 0$$
 , $\forall x \in IR$

Le déterminant du système est :

$$\begin{vmatrix} z_1(x) & z_2(x) \\ z'_1(x) & z'_2(x) \end{vmatrix} = z_1(x) z'_2(x) - z'_1(x) z_2(x)$$
$$= r_2 e^{(r_1 + r_2)x} - r_1 e^{(r_1 + r_2)x} = (r_2 - r_1) e^{(r_1 + r_2)x} \neq 0$$

ce qui implique que $\lambda = \mu = 0$

Proposition 4:

Soit $r \in IR$ et $z_{1,r}$ la fonction $x \to xe^{rx}$. La fonction $z_{1,r}$ est solution de (1) si et seulement si

r est la racine double du polynôme caractéristique P.

$$z_{1,r}(x) = xe^{rx} \rightarrow z'_{1,r}(x) = e^{rx} + rx e^{rx}$$

$$= (1 + rx)e^{rx}$$

$$z''_{1,r}(x) = re^{rx} + r(1+rx)e^{rx} - (r^2x, 2r)e^{rx}$$

(1)
$$[a(r^2x + 2r) + b(1+rx) + cx]e^{rx} = 0$$

$$\Leftrightarrow (ar^2 + br + c)x + 2ar + b = 0, \qquad \forall x \in IR$$

$$ar^{2} + br + c = 0$$
 et $r = -\frac{b}{2a}$

Proposition 5:

On suppose $\Delta=0$. Soit r la racine double du polynôme caractéristique P. Les solutions

 $z_r: x \to e^{rx}$ et $z_{1,r}: x \to xe^{rx}$ sont linéairement indépendantes.

Preuve :En procédant de façon analogue que pour la preuve de la proposition 3, nous obtenonsque le déterminant du système est :

$$\begin{vmatrix} z_r(x) & z_{1,r}(x) \\ z'_r(x) & z'_{1,r}(x) \end{vmatrix} = (1+rx)e^{2rx} - rxe^{2rx} = e^{2rx} \neq 0$$

non nul, d'où l'indépendance linéaire des deux solutions.

Théorème :

Soit $a \in IR^*$, $b, c \in IR$, S l'ensemble des solutions de l'équation différentielle :

(1) ay'' + by' + cy = 0

Alors on a les résultats suivants :

- (i) S est un espace vectoriel de dimension deux sur IR.
- (ii) Si $\Delta > 0$, les racines r_1 , r_2 de P sont réelles , et l'on a :

$$S = \{ y / y(x) = k_1 e^{r_1 x} + k_2 e^{r_2 x}, \ \forall x \in IR, \ k_1, k_2 \in IR \}$$

(iii) Si $\Delta > 0 = 0$, soit r la racine double de P, alors on a:

$$S = \{ y / y(x) = (k_1 + k_2 x)e^{rx}, \forall x \in IR, k_1, k_2 \in IR \}$$

(iv) Si $\Delta < 0$, notons $r_1 = -\frac{b}{2a} + i\omega$ et $r_2 = -\frac{b}{2a} - i\omega$, (avec $\omega = \frac{\sqrt{-\Delta}}{2a}$), les deux racines complexes du polynôme P, alors on a:

$$S = \left\{ y / y(x) = (k_1 \cos \omega x + k_2 \sin \omega x) e^{-\frac{b}{2a}x}, \ \forall x \in IR, \ k_1, k_2 \in IR \right\}$$

Preuve:

(i) Supposons $\Delta \neq 0$, et soient r_1 et r_2 les racines de P, soit z une solution de (1). Soient k_1 et k_2 deux fonctions solutions du système :

$$k_1(x)z_{r_1}(x) + k_2(x)z_{r_2}(x) = z(x)$$
, $\forall x$

$$k_1(x)z'_{r_1}(x) + k_2(x)z'_{r_2}(x) = z'(x)$$

On obtient:

$$k_1(x) = \frac{(z \, z_{r_2} - z' z_{r_2})(x)}{(z_{r_1} z_{r_2} z'_{r_1})(x)}$$

$$k_2(x) = \frac{(z \, z_{r_2} - z' z_{r_1})(x)}{(z_{r_1} z'_{r_2} - z_{r_2} z'_{r_1})(x)}$$

On calcule $k'_1(x)$ et $k'_2(x)$, et on utilise le fait que z, z_{r_1} et z_{r_2} sont solutions de (1), ce qui donne:

 $k'_1(x)=k'_2(x)=0$ d'où $k_1(x)=k_1$ et $k_2(x)=k_2$ donc $z(x)=k_1z_{r_1}(x)+k_2z_{r_2}(x)$, donc $\{z_{r_1},z_{r_2}\}$ base de S. Même démarche si $\Delta=0$, en considérant z_r et $z_{1,r}$, où r est la racine double du polynôme caractéristique P.

Théorème (problème de Cauchy) :

Etant donné un nombre réel x_o et deux nombres complexes y_o et z_o , il existe une solution et une seule y de l'équation ay'' + by' + cy = 0 telle que $y(x_o) = y_o$ et $y'(x_o) = z_o$

Preuve:

1^{er} **cas**: $\Delta \neq 0$, il s'agit de trouver deux constantes réelles k_1 et k_2 telles

que:

$$\begin{cases} k_1 e^{r_1 x_o} + k_2 e^{r_2 x_o} = y_o \\ k_1 r_1 e^{r_1 x_o} + k_2 r_2 e^{r_2 x_o} = z_o \end{cases}$$

Le système est de Cramer d'après la proposition 3.

 $2^{\grave{e}me}$ cas: $\Delta=0$, on est conduit à étudier le système

$$\begin{cases} k_1 e^{r_1 x_o} + k_2 e^{r_2 x_o} = y_o \\ k_1 r_1 e^{r_1 x_o} + k_2 r_2 e^{r_2 x_o} = z_o \end{cases}$$

Le système étant de Cramer d'après la proposition 5 , la solution existe et elle est unique.

(2) Equations avec second membre

Soit $a \in IR^*$, $b \in IR$, nous nous proposons de résoudre l'équation différentielle : ay'' + by' + cy = g(x) (2)

On appelle équation sans second membre (ou équation homogène) associée à (2) l'équation

$$ay'' + by' + cy = 0 \tag{1}$$

Notons $S_{\boldsymbol{g}}$ l'ensemble des slutions de (2) ; on suppose que \boldsymbol{g} est choisie de telle façon que

 S_g soit non vide.

Soit S l'ensemble des solutions de (2) ; on suppose que g est choisie de telle façon que S_g soit non vide.

Soit S l'ensemble des solutions de (1).

Théorème 1: Etant donné une solution particulière φ_1 de (2), pour que φ soit solution de (2), il faut et il suffit que $\varphi - \varphi_1$ soit solution de (1).

$$S_g = \varphi_1 + S \Longleftrightarrow \forall \varphi \in S_g \ , \exists \psi \in S \ : \varphi = \varphi_1 + \psi$$

Corollaire : Problème de Cauchy

Etant donné trois nombres réels x_o, y_o et z_o , il existe une solution et une seule y de (2) telle que :

$$y(x_o) = y_o$$
 et $y'(x_o) = z_o$

Preuve:

Soit φ_1 une solution particulière de (2)

On cherche φ sous la forme : $\varphi = \varphi_1 + \psi$

$$y_o = \varphi(x_o) = \varphi_1(x_o) + \psi(x_o)$$
 et $z_o = \psi(x_o) = \varphi'_1(x_o) + \psi'(x_o)$

$$\begin{cases} \psi(x_o) = y_o - \varphi_1(x_o) & \text{La solution est unique d'après} \\ \psi'(x_o) = z_o - \varphi'_1(x_o) & \text{le théorème de Cauchy} \end{cases}$$

Remarque: Principe de superposition

Si y_k est solution de l'équation :

$$ay'' + by' + cy = f_k$$
, $1 \le k \le n$, n entier fixé

et si
$$f = \sum_{k=1}^{n} f_k$$
, alors $y = \sum_{k=1}^{n} y_k$ est solution de l'équation :

$$ay$$
" $+by$ ' $+cy = f$

(3) Recherche d'une solution particulière pour les équations à seconds membres remarquables :

- a) $ay'' + by' + cy = P_n(x)$, où P_n est une fonction plynôme de degé n. Cherchons une solution particulière notée y_0 de l'équation ci-dessus. Trois cas sont possibles :
 - (i) Si $c \neq 0$, on prend : $y_o(x) = Q_n(x)$, $deg Q_n = n$
 - (ii) Si c = 0 et $b \neq 0$, $y_o(x) = Q_{n+1}(x)$, $deg Q_{n+1} = n+1$
 - (iii) Si c = b = 0 $y_o(x) = Q_{n+2}(x)$, $deg Q_{n+2} = n + 2$

Les coefficients du polynôme Q_m sont déterminés par identifications.

- b) $ay'' + by' + cy = De^{\lambda t}$, où D et λ sont des constantes réelles. Trois cas sont possibles :
- (i) Si λ n'est pas racine du polynôme caractéristique , on prend:

$$y_o(x) = \frac{D}{a\lambda^2 + b\lambda + c} e^{\lambda x}$$

(ii) Si λ est une racine simple du polynôme caractéristique, on prend:

$$y_o(x) = \frac{D}{2a\lambda + b} xe^{\lambda x}$$

(iii) Si λ est racine double du polynôme caractéristique, on prend :

$$y_o(x) = \frac{D}{2a} x^2 e^{\lambda x}$$

Exercices: Intégrer les équations: $y'' + 4y' = x^2 - 2x$

$$y'' - 6y' + 9y = 5 e^{3x}$$

- c) $ay'' + by' + cy = P_n(x)e^{\lambda x}$, Pn de degré n, λ constante réelle. Trois cas sont possibles :
 - (i) Si λ n'est pas racine du polynôme caractéristique, on prend:

$$y_o(x) = Q_n(x) e^{\lambda x} \operatorname{deg} Q_n = n$$

(ii) Si λ est une racine simple du polynôme caractéristique, on prend :

$$y_o(x) = Q_{n+1}(x) e^{\lambda x}$$
 avec $\deg Q_{n+1} = n + 1$

(iii) Si λ est racine double du polynôme caractéristique ,on prend :

$$y_o(x) = Q_{n+2}(x) e^{\lambda x}$$
 avec $\deg Q_{n+2} = n + 2$

Les coefficients du polynôme Q_m sont déterminés par identifications.

- d) $ay'' + by' + cy = e^{\lambda x}$. $(A\cos\omega x + B\sin\omega x)$, A et B étant des constantes réelles. Deux cas sont possibles :
- (i) Si λ +i ω n'est pas racine du polynôme caractéristique, on prend comme solution particulière:

$$y_o(x) = e^{\lambda x} (C\cos \omega x + D\sin \omega x)$$

(ii) Si $\lambda + i\omega$ est une racine du polynôme caractéristique ,on prend comme solution particulière:

$$y_o(x) = xe^{\lambda x} (C\cos\omega x + D\sin\omega x)$$

Les constantes réelles C et D sont déterminées par identifications en utilisant le fait que les fonctions $x \to e^{\lambda x} \cos \omega x$ et $x \to e^{\lambda x} \sin \omega x$ sont liéairement indépendantes .

Exercices

$$y'' - 4y = x^2 - 2x; \quad y'' + 4y = e^x \sin^2 x;$$

$$y'' + 3y = \cos^3 x; y'' + y' - 2y = e^x + 3e^{2x}; y'' - 2y' + 2y = \sin x + \cos x. e^x + x^2$$

4) Méthode de la variation de la constante :

Soit à résoudre l'équation:

(2) ay'' + by' + cy = f $a \in IR^*, f$ étant une fonction continue. Discutons suivant le discriminant Δ :

1er cas:
$$\Delta = b^2 - 4ac > 0$$
:

Soit r_1 et r_2 les racines distinctes de l'équation : $ar^2 + br + c = 0$

La solution générale de l'équation homogène associée à l'équation (2) est de la forme :

$$y(x) = k_1 e^{r_1 x} + k_2 e^{r_2 x}, k_1, k_2 \in IR$$

On cherche alors la solution de (2) en considérant :

$$y(x) = k_1(x)e^{r_1x} + k_2(x)e^{r_2x}$$
, on a:

$$y'(x) = (k_1r_1 + k'_1)e^{r_1x} + (k_2r_2 + k'_2)e^{r_2x}$$

$$y''(x) = (k_1 r_{1+}^2 k'_1 r_1) e^{r_1 x} + (k_2 r_2^2 + k'_2 r_2) e^{r_2 x} + (k'_1(x) e^{r_1 x} + k'_2(x) e^{r_2 x})'$$

Nous imposons la condition : $k'_1(x)e^{r_1x} + k'_2(x)e^{r_2x} = 0$

$$ay'' + ay' + cy = \underbrace{(ar_1^2 + br_1 + c)}_{= 0} k_1 e^{r_1 x} +$$

$$+\underbrace{(ar_2^2 + br_2 + c)}_{= 0} k_2 e^{r_2 x} +$$

$$+a(k'_1r_1e^{r_1x}+k'_2r_2e^{r_2x})=f(x)$$

 \Leftrightarrow

$$a(k'_1(x)r_1e^{r_1x} + k'_2(x)r_2e^{r_2x}) = f(x)$$

La fonction $y = k_1 e^{r_1 x} + k_2 e^{r_2 x}$ sera solution de (2) si k_1 et k_2 vérifient le système :

$$\begin{cases} e^{r_1 x} k t_1(x) + e^{r_2 x} k t_2(x) = 0 \\ r_1 e^{r_1 x} k t_1(x) + r_2 e^{r_2 x} k t_2(x) = \frac{1}{a} f(x) \end{cases}$$

$$k'_1(x) = \frac{1}{a(r_1-r_2)}e^{-r_1x} f(x)$$

$$k'_2(x) = \frac{1}{a(r_1-r_2)}e^{-r_2x} f(x)$$

La solution générale de (2) s'obtient de la façon :

$$y(x) = k_1(x)e^{r_1x} + k_2(x)e^{r_2x} + K_1 e^{r_1x} + K_2e^{r_2x}$$

$$y(x) = (k_1(x) + K_1)e^{r_1x} + (k_2(x) + K_2)e^{r_2x}, K_1, K_2 \in IR$$

Finalement la solution générale est la suivante :

$$y(x) = \frac{1}{a(r_1 - r_2)} \left\{ e^{r_1 x} \int_{\alpha}^{x} e^{-r_1 x} f(t) dt - e^{r_2 x} \int_{\alpha}^{x} e^{-r_2 x} f(t) dt \right\} + K_1 e^{r_1 x} + K_2 e^{r_2 x}$$

2ème cas : $\Delta < 0$

La solution générale de l'équation homogène associée à (2) peut s'écrire :

$$y(x) = (k_1 \cos \omega x + k_2 \sin \omega x)e^{-\left(\frac{b}{2a}\right)x}$$
 où $\omega = \frac{\sqrt{-\Delta}}{2a}$

On cherche la solution de (2) sous la forme :

$$y(x) = (k_1(x)\cos\omega x + k_2(x)\sin\omega x)e^{-\left(\frac{b}{2a}\right)x}$$

En procédant de façon analogue au cas précédent ,on obtient le système :

$$\begin{cases} (\cos \omega x)k'_1(x) + (\sin \omega x)k'_2(x) = 0\\ -(\sin \omega x)k'_1(x) + (\cos \omega x)k'_2(x) = \frac{1}{a\omega}f(x)e^{-\left(\frac{b}{2a}\right)x} \end{cases}$$

Soit

$$\begin{cases} k'_1(x) = -\frac{1}{a\omega}f(x)e^{+\left(\frac{b}{2a}\right)x}\sin\omega x \\ k'_2(x) = \frac{1}{a\omega}f(x)e^{+\left(\frac{b}{2a}\right)x}\cos\omega x \end{cases}$$

La solution générale de (2) est donnée par la formule suivante :

$$y(x) = -\frac{1}{a\omega} (\cos \omega x) e^{-\left(\frac{b}{2a}\right)x} \int_{\alpha}^{x} (\sin \omega t) e^{\left(\frac{b}{2a}\right)t} f(t) dt +$$

$$+\frac{1}{a\omega}\left(\sin\omega x\right)e^{-\left(\frac{b}{2a}\right)x}\int_{a}^{x}\left(\cos\omega t\right)e^{\left(\frac{b}{2a}\right)t}f(t)dt+\left(K_{1}\cos\omega x+K_{2}\sin\omega x\right)e^{-\left(\frac{b}{2a}\right)x},K_{1},K_{2}\in\mathit{IR}.$$

3ème cas: $\Delta = 0$, la solution générale de (2) est donnée par :

$$y(x) = \frac{1}{a}e^{-\left(\frac{b}{2a}\right)x}\left\{\int_{a}^{x}e^{\left(\frac{b}{2a}\right)t}f(t)dt - \int_{a}^{x}t e^{\left(\frac{b}{2a}\right)t}f(t)dt\right\} + (K_{1} + K_{2}x)e^{-\left(\frac{b}{2a}\right)x}, K_{1}, K_{2} \in IR.$$

Remarque :La résolution de l'équation (2) peut s'effectuer de la façon suivante:

Premier cas: $\Delta \geq 0$.

Soit r une racine du polynôme caractéristique.On cherche une solution de (2) sous la forme $y(x) = z(x)e^{rx}$. Nous obtenons une équation différentielle en z:

$$az'' + (2ar + b)z' = f(x)e^{-rx}$$

En posant u = z', nous avons une équation différentielle linéaire en u:

$$au' + (2ar + b)u = f(x)e^{-rx}$$

La résolution de l'équation ci-dessus permettra la détermination de z.

Deuxième cas: $\Delta < 0$.

Soit $\alpha + i\beta$ une racine du polynôme caractéristique. Cherchons une solution de (2) sous la forme $y(x) = z(x)e^{\alpha x} \cdot \cos(\beta x)$. L'équation obtenue est la suivante:

$$z''e^{\alpha x}\cos(\beta x) - 2\beta z'e^{\alpha x}\sin(\beta x) = f(x)$$

En posant u=z', nous avons une équation différentielle linéaire en u:

$$u'e^{\alpha x}\cos(\beta x) - 2\beta ue^{\alpha x}\sin(\beta x) = f(x)$$

La résolution de l'équation ci-dessus permettra de déterminer la fonction u et d'en déduire z ensuite.

III- Equations linéaires du second ordre :

Une équation différentielle linéaire du second ordre est de la forme :

(1)
$$y'' + p(x)y' + q(x)y = g(x)$$

où p,q et g sont des fonctions continues sur un intervalle ouvert $I =]\alpha, \beta[$

(1) Equations sans second membre :

L'équation homgène associée à (1) s'écrit :

(2)
$$y'' + p(x)y' + q(x)y = 0$$

Soit *S* l'ensemble des solutions de (2), ona le résultat suivant:

Théorème:

(i) Soient $y_1, y_2 \in S$, alors y_1 et y_2 sont linéairement indépendants si et seulement si

 $W(y_1,y_2)(x) \neq 0$ pour un $x \in I$, avec $W(y_1,y_2)(x) = y_1(x).y_2'(x) - y_2(x).y_1'(x)$. (ii) Soient y_1 et $y_2 \in S$ vérifiant la condition (i), alors:

$$S = \{ y/y = c_1y_1 + c_2y_2 \ c_1, c_2 \in IR \}$$

Méthode de la réduction de l'ordre :

Soit y_1 une solution de l'équation (2)

$$y'' + p(x)y' + q(x)y = 0$$

On cherche la solution sous la forme :

$$y = v. y_1$$

En effectuant les calculs, on obtient l'équation :

(3)
$$v'' + (p+2 \frac{y_1'}{y_1})v' = 0$$

En posant w = v', on obtient une équation différentielle linéaire du premier ordre.

(2) Equations avec second membre

On reprend l'équation initiale:

(1)
$$y'' + p(x)y' + q(x)y = g(x)$$

Théorème :

Soit y_p une solution particulière de (1): y_1 et y_2 deux solutions linéairement indépendantes de (2), alors la solution générale de (1) s'écrit :

$$y = y_p + c_1 y_1 + c_2 y_2$$

Méthode de la réduction :

Partant d'une solution particulière y_1 de (2) , on cherche la solution de (1) sous la forme $y=y_1.\nu$, nous obtenons l'équation différentielle suivante qui peut se transformer en une équation linéaire du premier ordre en posant $w=\nu'$:

$$y_1v'' + 2(y'_1 + py_1)v' = g$$

Remarque:

- a) L'espace vectoriel des solutions de l'équation :
- (*) y'' + a(x)y' + b(x)y = 0, a,b continues est de dimention ≤ 2 . Il existe au plus une solution telle que: $y(x_o) = y_o$, $y'(x_o) = z_o$
 - b) Deux solutions y_1 et y_2 de l'équation (*) sont linéairement indépendantes si et

seulement si le déterminant
$$\begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix}$$
 est différent de 0 pour tout x .

Ali ALAMI-IDRISSI Saïd EL HAJJI et Samir HAKAM
Université Mohammed V - Agdal
Faculté des Sciences
Département de Mathématiques et Informatique
Groupe d'Analyse Numérique et Optimisation
Avenue Ibn Batouta, B.P. 1014
Rabat, Maroc
Tel et fax +(37)775471

Pages web:

http://www.fsr.ac.ma/ANO/

Email: alidal@fsr.ac.ma elhajji@fsr.ac.ma s-hakam@fsr.ac.ma

http://www.fsr.ac.ma/ANO/elhajji/