SMIA/S3 ANALYSE 3 A.ALAMI IDRISSI et E.ZEROUALI Chapitre 5 FONCTIONS DE IRⁿ DANS IR^p

I) NOTIONS DE TOPOLOGIE SUR IRⁿ

- 1) Normes sur IR^n :
- a) Définition:

On appelle norme sur \mathbb{R}^n toute application $x \to ||x||$ de \mathbb{R}^n dans \mathbb{R}^+ telle que :

- (i) $||x|| = 0 \iff x = 0$
- (ii) $\forall \lambda \in IK, \ \forall x \in E, \ \|\lambda x\| = |\lambda| \|x\|$
- (iii) $\forall (x,y) \in E^2$ $||x+y|| \le ||x|| + ||y||$ (l'inégalité triangulaire)

L'espace \mathbb{R}^n étant muni de la norme $\| \cdot \|$ est dit espace normé.

b) Exemples:

Sur \mathbb{R} l'application valeur absolue $x \to |x|$ est une norme.

Sur
$$\mathbb{R}^n$$
 les applications $\| \cdot \|_1 : x \to \sum_{k=1}^n |x_k|$, $\| \cdot \|_2 : x \to (\sum_{k=1}^n |x_k|^2)^{1/2}$ et

 $\| \|_{\infty} : x \to \sup_{1 \le k \le n} |x_k|$ sont des normes.

Remarque: Dans l'espace \mathbb{R}^n , on a pour tout $x \in \mathbb{R}^n$:

$$||x||_{\infty} \le ||x||_{2} \le ||x||_{1} \le n||x||_{\infty} \le n||x||_{1}$$

Plus généralement, nous verrons plutard que deux normes quelconques sur \mathbb{R}^n \parallel et \parallel \parallel sont équivalentes dans le sens suivant :

$$\exists \alpha, \beta > 0$$
 tel que : $\alpha \|x\|' \le \|x\| \le \beta \|x\|'$

c) Boules ouvertes et fermées de \mathbb{R}^n

Soit $\| \ \|$ une norme sur \mathbb{R}^n . Pour tout point x de \mathbb{R}^n et tout r>0, la boule ouverte (respectivement fermée) de centre x et de rayon r est définie par :

$$B(x,r) = \left\{ y \in \mathbb{R}^n / \|x-y\| < r \right\}$$
 (respectivement $\overline{B}(x,r) = \left\{ y \in \mathbb{R}^n / \|x-y\| \le r \right\}$).

Dans $\mathbb R$ les boules ouvertes (respectivement fermées) sont les intervalles centrés ouverts (respectivement fermés).

Exercice . Déterminer les boules unités de \mathbb{R}^2 centrées à l'origine des trois normes fondamentales définies ci-dessus.

d) Intérieur, adhérence d'une partie de \mathbb{R}^n

Une partie A de \mathbb{R}^n est dite ouverte si elle est soit vide soit non vide et si pour tout point x de A il existe r>0 telle que la boule de centre x et de rayon r soit contenue dans A ($B(x,r)\subset A$). Soit A une partie quelconque de \mathbb{R}^n ; un point a de A est dit point intérieur de A s'il existe une boule centrée en a et contenu dans A .L'intérieur d'une partie A quelconque de \mathbb{R}^n est l'ensemble des points intérieurs de A et c'est le plus grand ouvert de \mathbb{R}^n contenu dans A, il es noté A . A titre d'exemple, les boules ouvertes et plus généralement les réunions quelconques de boules ouvertes sont des ouverts.

Une partie B de \mathbb{R}^n est dite fermée si elle est le complémentaire d'une partie ouverte A, soit $B=\mathbb{R}^n\setminus A$. Soit B une partie quelconque de \mathbb{R}^n ; un point a de \mathbb{R}^n est dit point adhérent à B si pour tout r>0 on a $B(x,r)\cap B$ non vide. L'adhérence d'une partie B quelconque de \mathbb{R}^n est l'ensemble des points ahérents à B, c'est le plus petit fermé contenant B, noté \overline{B} . Une réunion finie de boules fermées est un exemple de fermé.

Exemple: L'intérieur de la boule fermée $\overline{B}(x,r)$ est la boule ouverte B(x,r). L'adhérence de la boule ouverte B(x,r) est la boule fermée $\overline{B}(x,r)$.

Une partie A de \mathbb{R}^n est dite bornée s'il existe r>0 , tel que A soit contenue dans la boule fermée $\overline{B}(0,r)$:

$$\exists r > 0, \ \forall x \in A, \ \|x\| \le r$$

Une partie A de \mathbb{R}^n est dite connexe si elle n'est pas réunion de deux ouverts disjoints de \mathbb{R}^n :

$$\nexists A_1, A_2$$
 ouverts de \mathbb{R}^n : $A = A_1 \cup A_2$ avec $A_1 \cap A_2 = \emptyset$

Dans $\ensuremath{\mathbb{R}}$, une partie est connexe si et seulement si c'est un intervalle .

Remarque: Du fait que deux normes quelconques de \mathbb{R}^n sont toujours équivalentes, les notions définies dans ce paragraphe (ouvert,fermé,..) ne dépendent pas de la norme choisie dans \mathbb{R}^n .

2) Suites dans \mathbb{R}^n

Définition.Une suite (x_m) d'éléments de \mathbb{R}^n est dite convergente vers $x \in \mathbb{R}^n$, si l' on a :

$$\forall \varepsilon > 0, \exists m_0 \in \mathbb{N} : m > m_0 : ||x_m - x|| < \varepsilon$$

Proposition 1

La limite d'une suite convergente dans \mathbb{R}^n est unique.

Proposition 2

Soit (x_m) une suite d'élements d'une partie A de \mathbb{R}^n . Nous avons :

$$x_m = (x_m^1, x_m^2, \dots, x_m^n)$$

Alors la suite (x_m) converge dans \mathbb{R}^n si et seulement si chaque suite suite réelle (x_m^k) ($k \in \{1,...,n\}$) converge dans \mathbb{R} et l'on a :

$$\lim_{m\to+\infty} x_m = \left(\lim_{m\to+\infty} x_m^1, \lim_{m\to+\infty} x_m^2, \dots, \lim_{m\to+\infty} x_m^n\right)$$

Propriètès :

Soient (u_m) , (v_m) deux suites convergentes de \mathbb{R}^n et λ réel, alors grâce aux propriètès des suites réelles, nous avons :

i)
$$\lim_{m\to+\infty} (u_m + v_m) = \lim_{m\to+\infty} u_m + \lim_{m\to+\infty} v_m$$

ii) $\lim_{m\to+\infty} \lambda u_m = \lambda \lim_{m\to+\infty} u_m$

Remarques:1) La convergence d'une suite ne dépend pas de la norme choisie dans \mathbb{R}^n .

2) On peut montrer que l'adhérence d'une partie A quelconque de \mathbb{R}^n , est égal à l'ensemble des limites de suites d'élements de A.

e) Compacité:

Définition:

Une partie A de \mathbb{R}^n est dite compacte si toute suite d'élements de A on peut en extraire une sous suite convergente dans A.

Théorème 1 :

Une partie de \mathbb{R}^n est compacte si et seulement si elle est fermée et bornée dans \mathbb{R}^n .

Exemple: Toute boule fermée ou sphère de \mathbb{R}^n est compacte.

- II) FONCTIONS CONTINUES DE \mathbb{R}^n DANS \mathbb{R}^p
- 1) Notion de limite:

a) Définition.Soit f une fonction définie sur une partie A de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . Soit $a \in \overline{A}$, on dit que f admet une limite en a de valeur $l \in \mathbb{R}^p$ quand x tend vers a, si l'on a :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in A \;\; \mathsf{et} \;\; \|x - a\| < \eta \;\; \Rightarrow \; \left\| \; f(x) - l \; \right\| \, < \varepsilon.$$

On écrit alors :

$$\lim_{x\to a} f(x) = l$$

b) Remarque:

Avec les hypothèses de la définition ci-dessus, comme la fonction f est à valeurs dans \mathbb{R}^p , nous écrivons $f = (f_1, \ldots, f_p)$. En prenant la même démarche que pour la proposition 2, nous pouvons montrer que la fonction f admet une limite l en a si et seulement si les fonctions composantes f_1, \ldots, f_p admettent des limites l_1, \ldots, l_p et l'on a alors :

$$l = (l_1, \ldots, l_p)$$

Ceci ramène l'étude des limites de fonctions sur \mathbb{R}^n et à valeurs dans \mathbb{R}^p aux limites de fonctions à valeurs réelles.

c) Propriètès des limites:

Soient f et g deux fonctions définies sur $A \subset \mathbb{R}^n$ à valeurs réelles et admettant une limite en un point $a \in \overline{A}$, nous avons alors les propriètès:

- i) $\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$
- ii) $\lim_{x\to a} (f(x).g(x)) = \lim_{x\to a} f(x).\lim_{x\to a} g(x)$
- iii) $\lim_{x\to a} [f(x)/g(x)] = [\lim_{x\to a} f(x)]/[\lim_{x\to a} g(x)]$, à condition que $g(x)\neq 0$ pour x voisin de a.

Exercice: Calculer $\lim_{(x,y)\to(0,0)} x/(x^2+y^2)$

2) Continuité

a) Définition:Soit f une fonction définie sur une partie A de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . On dit que f est continue en un point a appartenant à l'intérieur de A, si l'on a :

$$\lim_{x\to a} f(x) = f(a)$$

ce qui se traduit par :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in A \text{ et } ||x - a|| < \eta \implies ||f(x) - f(a)|| < \varepsilon.$$

b) Remarque:

Grâce à la remarque II)1) b), étudier la continuité de $f = (f_1, ..., f_p)$ au point a se ramène à l'étude de la continuité des fonctions composantes $f_1, ...,$ et f_p en ce point.

c) Théorème 2

Soit f une fonction définie sur une partie A de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . Alors f est continue au point a si et seulement si pour toute suite (x_m) d'élements de A qui converge vers a la suite $(f(x_m))$ converge vers f(a).

Remarque: Soit f une fonction définie et continue sur une partie A de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . Soit $(x_1,x_2,\ldots,x_n)\in A$, en fixant (x_2,\ldots,x_n) l'application $x_1\to f$ (x_1,x_2,\ldots,x_n) est continue. Même résultat pour les autres fonctions partielles de f. La réciproque de cette propriète est fausse, voici un contre-exemple avec la fonction définie dans \mathbb{R}^2 par:

$$f(x,y) = \begin{cases} x & y/(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

d) Proposition 3: Continuité globale

Soit $f: \mathbb{R}^n \to \mathbb{R}^p$. Alors nous avons l'équivalence:

- i) f est continue en tout point de \mathbb{R}^n .
- ii) L'image réciproque par f de tout ouvert (respectivement fermé) de \mathbb{R}^p est un ouvert (respectivement fermé) de \mathbb{R}^n .

e) Proposition 4:

Toute application linéaire u de \mathbb{R}^n dans \mathbb{R}^p , est continue et vérifie une inégalité de la forme suivante :

$$||u(x)|| \leq M||x||$$
, $\forall x \in \mathbb{R}^n$

où M est une constante dépendante de u.

f) Exemple:

Soit à étudier la continuité de la fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} x^2 y/(x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Il est clair que f est continue en tout point (x,y) non nul. Passons en coordonnées polaires , nous obtenons :

$$f(r\cos\theta, r\sin\theta) = r\cos^2\theta\sin\theta$$

ďoù

$$|f(r\cos\theta,r\sin\theta)| \le r$$

donc

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0)$$

g) Proposition 5:

Soit f une fonction définie sur une partie ouverte A de \mathbb{R}^2 et $(a,b) \in A$. Alors f est continue au point (a,b) si et seulement si pour tout $\theta \in [0,2\pi]$, nous avons :

$$\lim_{r\to 0} f(a + r\cos\theta, b + r\sin\theta) = f(a,b)$$

Exercice. Discuter la continuité de l'application $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

$$f(x,y) = \begin{cases} |x|^{\alpha} |y|^{\beta} / (x^2 + y^2) & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

selon les paramétres réels α et β .

h) Propriètès algébriques :

Soient f et g deux fonctions définies sur $A \subset \mathbb{R}^n$ à valeurs réelles et qui son continues en un point a intérieur de A, alors les fonctions somme f+g, produit $f \cdot g$ et rapport f/g (si $g(a) \neq 0$) sont continues en a.

La preuve découle du théorème 2, et des propriètès des suites réelles convergentes .

Un autre corollaire de ce théorème affirme que si f est continue en a et si g est continue en b = f(a), alors la fonction composée $g \circ f$ est continue en a.

k) Propriètès topologiques des fonctions continues :

Théorème 3:

Soit f une fonction définie et continue sur une partie A de \mathbb{R}^n et à valeurs dans \mathbb{R}^p . Alors l'image par f de tout compact K de A est compact dans \mathbb{R}^p .

Corollaire

Toutes les normes sur \mathbb{R}^n sont deux à deux équivalentes.

Théorème

L'image de toute partie connexe de \mathbb{R}^n par une application continue de \mathbb{R}^n dans \mathbb{R}^p est connexe.

III) CALCUL DIFFERENTIEL

1) Dérivées partielles

a) **Définition**: Soit U un ouvert de \mathbb{R}^n et $a=(a_1,...,a_n)\in U$. On dit que $f\colon U\to\mathbb{R}$ admet une dérivée partielle par rapport à la variable x_i au point a si la fonction f_i définie dans un voisinage de a_i par $f_i(x)=f\left(a_1,...,a_{i-1},a_i,a_{i+1},...,a_n\right)$ est dérivable au point a_i , c'est à dire que le rapport :

$$[f(a_1,..,a_{i-1},a_i+h,a_{i+1},...,a_n)-f(a_1,..,a_{i-1},a_i,a_{i+1},...,a_n)]/h$$

admet une limite finie quand h tend vers 0. Cette limite est notée $\frac{\partial f}{\partial x_i}(a)$ et appelée la dérivée partielle de f par rapport à x_i , au point a.

b) Exemples:

i) La fonction $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^2y^3$ admet des dérivées partielles par rapport à x et y en tout point de \mathbb{R}^2 , données par :

$$\frac{\partial f}{\partial x}(x,y) = 2xy^3$$
, $\frac{\partial f}{\partial y}(x,y) = 3x^2y^2$

ii) Soit f la fonction définie sur \mathbb{R}^2 par:

$$f(x,y) = \begin{cases} x & y/(x^2 + y^2) \text{ si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

On a $\lim_{h\to 0} [f(h,0)-f(0,0)]/h = \lim_{h\to 0} [f(0,h)-f(0,0)]/h = 0$

Donc f admet des dérivées partielles par rapport à x et y en (0,0) et on a $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.

c) Matrice jacobienne:

Soit f une fonction définie sur un ouvert U de \mathbb{R}^n à valeurs dans \mathbb{R}^p . Pour $x \in U$, nous avons $f(x) = \Big(f_1(x), \ldots, f_p(x)\Big)$, où f_1, \ldots, f_p sont des fonctions sur U à valeurs dans \mathbb{R} , appelées les fonctions composantes de f. Soit $i \in \{1, \ldots, n\}$, on dit que f admet des dérivées partielles par rapport à x_i en un point f de f0, si chacune des fonctions f1, ..., f2, admet une dérivée partielle par rapport à f3 au point f4.

Si pour tout $i \in \{1,...,n\}$, la fonction f admet au point a des dérivées partielles par rapport à x_i , la matrice à p lignes et à n colonnes

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \frac{\partial f_1}{\partial x_2}(a) & \dots & \frac{\partial f_1}{\partial x_n}(a) \\ \frac{\partial f_2}{\partial x_1}(a) & \frac{\partial f_2}{\partial x_2}(a) & \dots & \frac{\partial f_2}{\partial x_n}(a) \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_p}{\partial x_1}(a) & \frac{\partial f_p}{\partial x_2}(a) & \dots & \frac{\partial f_p}{\partial x_n}(a) \end{pmatrix}$$

notée J(f)(a) est appelée la matrice jacobienne de f au point a.

2) Dérivées partielles d'ordre supérieur

Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs réelles et $a \in U$. Soient i, $j \in \{1, \dots, n\}$. Supposons que f admette une dérivée partielle $\frac{\partial f}{\partial x_j}$ au voisinage du point a. Si la fonction $x \to \frac{\partial f}{\partial x_j}(x)$ admet une dérivée partielle par rapport à x_i au point a, on dit que la fonction f admet une dérivée partielle seconde par rapport à x_i et x_j au point a, notée $\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\left(\partial \left(\frac{\partial f}{\partial x_j}\right)\right)}{\partial x_i}(a)$. Si i = j, on écrit $\frac{\partial^2 f}{\partial x_i^2}(a)$ au lieu de $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$.

Pour tout muti-indice $\alpha = (\alpha_1, ..., \alpha_k) \in \mathbb{N}^k$, on définit de proche en proche les dérivées partielles d'ordre $|\alpha|$, quand elles existent par :

$$\partial^{\alpha} f(a) = \frac{\partial^{|\alpha|} f}{\partial x_{i_1}^{\alpha_1} \dots \partial x_{i_k}^{\alpha_k}} (a)$$

où $i_1,\ldots,i_k\in\{1,\ldots,n\}$ et $|\alpha|=\alpha_1+\ldots+\alpha_k$.

Théorème 4 (Théorème de Schwarz)

Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs réelles et admettant des dérivées partielles $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_j \partial x_i}$ définies au voisinage d'un point a de U. Si les fonctions $\frac{\partial^2 f}{\partial x_i \partial x_j}$ et $\frac{\partial^2 f}{\partial x_j \partial x_i}$ sont continues au point a, on a $\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_i \partial x_j}(a)$.

Remarques:i) Si la fonction $\frac{\partial^2 f}{\partial x_i \partial x_j}$ (ou $\frac{\partial^2 f}{\partial x_j \partial x_i}$) n'est pas continue au point , la relation $\frac{\partial^2 f}{\partial x_i \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_i}(a)$ n'est pas satisfaite à priori. Voici un contre-exemple:

Soit f la fonction définie sur \mathbb{R}^2 par:

$$f(x,y) = \begin{cases} x & y (x^2 - y^2)/(x^2 + y^2) \text{ si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

On a:

$$\frac{\partial f}{\partial x}(x,y) = (y(x^4 - y^4) + 4x^2y^3)/(x^2 + y^2)^2 , \quad \frac{\partial f}{\partial y}(x,y) = (x(x^4 - y^4) - 4x^2y^3)/(x^2 + y^2)^2$$
 ce qui donne :

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = -1 \quad \text{et} \quad \frac{\partial^2 f}{\partial x \partial y}(0,0) = 1$$

ii) Si $f: U \subset \mathbb{R}^n \to \mathbb{R}$ admet des dérivées partielles continues jusqu'à un ordre $k \geq 2$, alors d'aprés le théorème de Schwarz, on peut changer l'ordre des dérivations partielles par rapport à x_1, \dots, x_n .

3) Différentiabilité

Définition .Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs dans \mathbb{R}^p .On dit que f est différentiable au point x de U s'il existe une application linéaire $L: \mathbb{R}^n \to \mathbb{R}^p$ telle que :

$$f(x+h) = f(x) + L(h) + ||h|| \varepsilon(h)$$

où ε est une fonction définie au voisinage de 0 telle que $\lim_{h\to 0} \varepsilon(h) = 0$.

L'application linéaire L dépend de f et $de\ x$, elle est notée $df\ (x)$ et s'appelle la différentielle de f au point x. La différentiabilité de f peut s'exprimer dela façon suivante : il existe une application linéaire $L:\mathbb{R}^n\to\mathbb{R}^p$ telle que :

$$\lim_{h\to 0} \frac{1}{\|h\|} [f(x+h) - f(x) - L(h)] = 0$$

Exemples:

i) Soit I un intervalle ouvert de \mathbb{R} . Toute fonction $f:I\to\mathbb{R}$ dérivable au sens classique en un point x est différentiable et l'on a :

$$df(x)(h) = f'(x)h$$

où f'(x) désigne la dérivée de f au point x.

ii) Soit $f: \mathbb{R}^n \to \mathbb{R}^p$ une application linéaire .Alors f est différentiable en tout point de \mathbb{R}^n et l'on a pour tout $x \in \mathbb{R}^n$, df(x) = f. En effet , nous avons pour tout $(x,h) \in (\mathbb{R}^n)^2$ la relation f(x+h) = f(x) + f(h).

Théorème 5

Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs dans \mathbb{R}^p , et f_1,\ldots,f_p les composantes de f. Alors f est différentiable en un point x de U si et seulement si f_1,\ldots,f_p sont différentiables au point x et nous avons :

$$df(x) = (df_1(x), ..., df_p(x))$$

Théorème 6

Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs dans \mathbb{R}^p , et f_1,\ldots,f_p les composantes de f. Si f est différentiable en un point x de U alors pour tout $i\in\{1,\ldots,p\}$, la fonction composante f_i admet des dérivées partielles $\frac{\partial f_i}{\partial x_j}(x)$ pour tout $j\in\{1,\ldots,n\}$. De plus, la matrice associée à l'application linéaire df (x) dans les bases canoniques de \mathbb{R}^n et de \mathbb{R}^p est la matrice jacobienne $\left(\frac{\partial f_i}{\partial x_j}(x)\right)_{1\leq i\leq p,1\leq j\leq n}$ de f au point x.

Remarque

La réciproque du théorème 6 n'est pas toujours vraie. Etudier le contre-exemple suivant :

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = \begin{cases} x & y/\sqrt{x^2 + y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

Montrer que f admet des dérivées partielles nulles à l'origine mais qu'elle n'est pas différentiable en ce point.

Théorème 7

Soient U un ouvert de \mathbb{R}^n , f une fonction définie sur U à valeurs dans \mathbb{R} et admettant des dérivées partielles continues en un point a de U, alors f est différentiable au point a.

Définition

Soient U un ouvert de \mathbb{R}^n et une fonction $f:U\to\mathbb{R}$.On dit que f est de classe C^k sur U, k un entier non nul, si f admet des dérivées partielles $\partial^{\alpha}f$ continues pour tout $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n$ tel que $|\alpha|\leq k$.

4) Différentiabilité dans une direction

Définition. Soient U un ouvert de \mathbb{R}^n et \overrightarrow{u} un vecteur unitaire de \mathbb{R}^n . Une fonction $f:U\to\mathbb{R}$ est dite différentiable dans la direction de \overrightarrow{n} en un point a de U si le rapport $\frac{f\left(a+t\overrightarrow{u}\right)-f\left(a\right)}{t}$ admet une limite quand t tend vers 0. Cette limite , quand elle existe, est notée $D_{\overrightarrow{u}}f\left(a\right)$.

Théorème 8

Soient U un ouvert de \mathbb{R}^n et $f: U \to \mathbb{R}$ une fonction différentiable en un point a de U, et $\overrightarrow{u} = (u_1, \dots, u_n)$ un vecteur unitaire de \mathbb{R}^n . Alors f admet une dérivée au point a dans la direction de \overrightarrow{u} donnée par :

$$D_{\vec{u}}f(a) = df(a)(\vec{u})$$

5) Opérations sur les fonctions différentiables

Théorème 9

Soient U un ouvert de \mathbb{R}^n et deux fonctions $f,g:U\to\mathbb{R}^p$. Si f et g sont différentiables en un point a de U, alors:

i) f+g est différentiable au point a et on a:

$$d(f+g)(a) = df(a) + dg(a)$$
 (et $J(f+g)(a) = J(f)(a) + J(g)(a)$)

ii) Si p = 1, alors f.g est différentiable au point a et on a :

$$d(f.g)(a) = g(a)df(a) + f(a)dg(a)$$

iii) Si p=1 et $g(a)\neq 0$, alors $\frac{f}{g}$ est différentiable au point a et on a :

$$d\left(\frac{f}{g}\right)(a) = \frac{1}{g(a)^2} [g(a)df(a) - f(a)dg(a)]$$

Théorème 10

Soient U et V deux ouvert de \mathbb{R}^m et \mathbb{R}^n et deux fonctions $f:U\to\mathbb{R}^n$ et $g:V\to\mathbb{R}^p$ telles que $f(U)\subset V$. Soit a un point de U, alors si f est différentiable au point a et si g est différentiable au point f(a) alors $g\circ f$ est différentiable au point a et on a:

$$d(g \circ f)(a) = dg(f(a)) \circ df(a) \quad (\text{ et } J(g \circ f)(a) = J(g)(f(a)).J(f)(a))$$
 soit

$$\left(\frac{\partial (g_i \circ f)}{\partial x_j}(a)\right)_{\substack{1 \le i \le p, \\ 1 \le j \le m}} = \left(\frac{\partial g_i}{\partial y_k}(f(a))\right)_{\substack{1 \le i \le p, \\ 1 \le k \le n}} \left(\frac{\partial f_k}{\partial x_j}(a)\right)_{\substack{1 \le k \le n, \\ 1 \le j \le m}}$$

Exemples:

1) Soit $f: U \subset \mathbb{R}^2 \to \mathbb{R}^2$ et $g: V \to \mathbb{R}$ telles que $f(U) \subset V$. Supposons que f et g soient différentiables sur U et V respectivement .Nous avons :

$$J(f)(u,v) = \begin{pmatrix} \frac{\partial f_1}{\partial u}(u,v) & \frac{\partial f_1}{\partial v}(u,v) \\ \frac{\partial f_2}{\partial u}(u,v) & \frac{\partial f_2}{\partial v}(u,v) \end{pmatrix}$$

et

$$J(g)(x,y) = \left(\begin{array}{cc} \frac{\partial g}{\partial x}(x,y) & \frac{\partial g}{\partial y}(x,y) \end{array}\right)$$

ďoù

$$J(g \circ f)(u,v) = \begin{pmatrix} \frac{\partial g}{\partial x} (f_1(u,v), f_2(u,v)) & \frac{\partial g}{\partial y} (f_1(u,v), f_2(u,v)) \end{pmatrix} \begin{pmatrix} \frac{\partial f_1}{\partial u} (u,v) & \frac{\partial f_1}{\partial v} (u,v) \\ \frac{\partial f_2}{\partial u} (u,v) & \frac{\partial f_2}{\partial v} (u,v) \end{pmatrix}$$

On en déduit donc

$$\frac{\frac{\partial g(f(u,v))}{\partial u}}{\frac{\partial g(f(u,v))}{\partial v}} = \frac{\frac{\partial g}{\partial x}}{\frac{\partial x}{\partial v}} \left(f(u,v) \right) \frac{\frac{\partial f_1}{\partial u}(u,v)}{\frac{\partial u}{\partial v}} \left(f(u,v) \right) \frac{\frac{\partial f_2}{\partial u}(u,v)}{\frac{\partial g(f(u,v))}{\partial v}} = \frac{\frac{\partial g}{\partial x}}{\frac{\partial x}{\partial v}} \left(f(u,v) \right) \frac{\frac{\partial f_1}{\partial v}(u,v)}{\frac{\partial v}{\partial v}} \left(f(u,v) \right) \frac{\frac{\partial f_2}{\partial v}(u,v)}{\frac{\partial v}{\partial v}} \left(f(u,v) \right) \frac{\partial v}{\partial v} \left(f(u,v) \right)$$

2) Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable. Posons $x = r\cos\theta$, $y = r\sin\theta$, alors nous avons: $\frac{\partial f\left(x(r,\theta),y(r,\theta)\right)}{\partial r} = \frac{\partial f}{\partial r}\left(x(r,\theta),y(r,\theta)\right) \frac{\partial x}{\partial r}(r,\theta) + \frac{\partial f}{\partial y}\left(x(r,\theta),y(r,\theta)\right) \frac{\partial y}{\partial r}(r,\theta)$

et

$$\frac{\partial f(x(r,\theta),y(r,\theta))}{\partial \theta} = \frac{\partial f}{\partial x} \left(x(r\theta,\theta), y(r,\theta) \right) \frac{\partial x}{\partial \theta} (r,\theta) + \frac{\partial f}{\partial y} \left(x(r,\theta), y(r,\theta) \right) \frac{\partial y}{\partial \theta} (r,\theta)$$

ce qui donne

$$\frac{\partial f\left(x(r,\theta),y(r,\theta)\right)}{\partial r} = \cos\theta \frac{\partial f}{\partial x} \left(x(r,\theta),y(r,\theta)\right) + r\sin\theta \frac{\partial f}{\partial y} \left(x(r,\theta),y(r,\theta)\right)$$

et

$$\frac{\partial f\left(x(r,\theta),y(r,\theta)\right)}{\partial \theta} = -r\sin\theta \frac{\partial f}{\partial x}\left(x(r,\theta),y(r,\theta)\right) + r\cos\theta \frac{\partial f}{\partial y}\left(x(r,\theta),y(r,\theta)\right)$$

Exercice

Soit f une fonction dérivable sur \mathbb{R} . Montrer que les fonctions ϕ et ψ définies sur \mathbb{R}^2 par $\phi(x,y)=f(x+y)$ et $\psi(x,y)=f(x-y)$ sont différentiables et calculer leurs dérivées partielles.

6) Théorème des accroissements finis

Soit U un ouvert de \mathbb{R}^n . On dit que est convexe si pour tout couple $(a,b) \in U^2$, le segment $[a,b] = \{x = a + \lambda(b-a) / \lambda \in [0,1]\}$ est inclus dans U.

Théorème 11

Soit U un ouvert convexe de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction différentiable sur U. Alors pour tout couple $(x,x+h)\in U^2$ il existe $\theta\in]0,1[$ tel que :

$$f(x+h) - f(x) = df(x+\theta h)(h) = \sum_{i=1}^{n} \frac{\partial f}{\partial x}(x+\theta h)h_i$$

Remarque:

Le théorème des accroissements finis n'est pas toujours valable si la fonction f est à valeurs dans un espace \mathbb{R}^p avec $p \geq 2$. Néanmoins, nous avons le résultat du théorème suivant qui donne une inégalité des accroissements finis :

Théorème 12

Soit U un ouvert convexe de \mathbb{R}^n et $f:U\to\mathbb{R}^p$ une fonction différentiable sur U telle que $\|df(x)\| \le k$ (k une constante) pour tout $x\in U$. Alors , quels que soient les points x,y de U, on a :

$$|| f(y) - f(x) || \le k||y - x||$$

Corollaire

Soit U un ouvert convexe de \mathbb{R}^n et $f:U\to\mathbb{R}^p$ une fonction différentiable sur U. Alors f est constante sur U si et seulement si sa différentielle est nulle sur U (df(x)=0).

Le résultat est également $\,$ vrai dans le cas où $\,U\,$ est connexe.

7) Développements limités et Formule de Taylor:

Théorème 13

Soit $f: U \subset \mathbb{R}^n \to \mathbb{R}$.

A l'ordre 1:

Si f est de classe C^1 . Pour tout $a \in U$, nous avons le développement limité suivant, au voisinage du point a:

$$f(a + h) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)h_i + o(\|h\|)$$

A l'ordre 2:

Si f est de classe C^2 , nous avons le développement limité suivant, au voisinage du point a de U:

$$f(a + h) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(a)h_{i} + \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(a)h_{i}h_{j} \right) + o\left(\|h\|^{2}\right)$$

8) Extremums

Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction.

Définitions.On dit que f présente un maximum (respectivement minimum) local en un point x_0 de U, s'il existe une boule $B(x_0, r)$ contenue dans U telle que :

$$f(x) \leq f(x_0), \quad \text{pour tout } x \in B(x_0,r)$$
 (respectivement $f(x) \geq f(x_0), \quad \text{pour tout } x \in B(x_0,r)$)

Un point
$$x_0$$
 de U tel que $\nabla f(x_0) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x_0) \\ \cdot \\ \cdot \\ \frac{\partial f}{\partial x_n}(x_0) \end{pmatrix} = \overrightarrow{0}$

est dit point critique de f.

Théorème 14

Si f est différentiable au point $x_0 \in U$ et présente un extremum local en ce point , alors x_0 est un point critique de f.

Définition

Soit $M=(a_{ij})$ une matrice carrée d'ordre n réelle et symétrique ($a_{ij}=a_{ji}$ pour tout couple d'entiers $(i,j)\in [1,n]^2$). On dit que est positive si, pour tout $h\in \mathbb{R}^n$, nous avons :

 $(Mh,h) \geq 0$

Elle est dite définie positive si

(Mh,h) > 0

pour tout $h \in \mathbb{R}^n$.

$$(Mh,h) = \sum_{j=1}^{n} a_{ij}h_{i}^{2} + 2\sum_{,1 \leq i,j \leq 1} a_{ij}h_{i}h_{j}$$

Exemples:

1) Une matrice réelle symétrique d'odre 2 , $M = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ est positive si et

seulement si $a, c \ge 0$ et $\det M \ge 0.M$ est définie positive ssi a, c > 0 et $\det M > 0$.

2) Soit A une matrice réelle d'ordre $n \ge 1$, alors $M = {}^t AA$ (où ${}^t A$ la transposée de A) est positive. En effet, nous avons :

$$({}^{t}AA h,h) = (Ah,Ah) = ||Ah||^{2} \geq 0.$$

M est définie positive si A est inversible, soit ssi $\det A \neq 0$.

Remarque:

On peut montrer qu'une matrice symétrique réelle d'ordre n est positive (respectivement définie positive) ssi ses valeurs propres sont positives (respectivement strictement posisives).

Théorème 15

Soit M une matrice réelle carrée d'ordre n, symétrique définie positive, alors il existe une constante c>0 telle que:

$$(Mx,x) \ge c ||x||^2$$

pour tout $x \in \mathbb{R}^n$.

Définition

Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction. de classe C^2 . On appelle hessienne de f au point $x_0\in U$ la matrice symétrique:

$$H(f)(x_0) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2}(a) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \dots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(a) & \frac{\partial^2 f}{\partial x_2^2}(a) & \dots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(a) \\ \dots & \dots & \dots & \dots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n}(a) & \frac{\partial^2 f}{\partial x_2 \partial x_n}(a) & \dots & \frac{\partial^2 f}{\partial x_n^2}(a) \end{pmatrix}$$

Rappel sur la dimension 1:

Si I est un intervalle de \mathbb{R} et f une fonction de classe C^2 sur I. Soit $x_0 \in I$ tel que $f'(x_0) = 0$. Alors nous avons les résultats suivants:

- -Si $f''(x_0) > 0$, alors f présente un minimum strict en x_0 .
- -Si $f''(x_0) < 0$, alors f présente un maximum strict en x_0 .
- Si $f''(x_0) = 0$, on ne peut rien dire.

Théorème 16

Soit U un ouvert de \mathbb{R}^n et $f:U\to\mathbb{R}$ une fonction. de classe C^2 sur U et $x_0\in U$, un point critique de f. Alors :

- i) Si la matrice $H(f)(x_0)$ est définie positive, alors f présente un minimum local au point x_0 .
- ii) Si la matrice $-H(f)(x_0)$ est définie positive, alors f présente un maximum local au point x_0

Théorème 17 (Cas de la dimension 2)

Soit U un ouvert de \mathbb{R}^2 et $f:U\to\mathbb{R}$ une fonction. de classe C^2 sur U et $(x_0,y_0)\in U$, un point critique de f. On pose $r=\frac{\partial^2 f}{\partial x^2}(x_0,y_0), t=\frac{\partial^2 f}{\partial y^2}(x_0,y_0)$ et $s=\frac{\partial^2 f}{\partial x\,\partial y}(x_0,y_0)$. Alors nous avons les résultats suivants:

- Si $rt s^2 > 0$ et r > 0, f admet en (x_0, y_0) un minimum local.
- Si $rt s^2 > 0$ et r < 0, f admet en (x_0, y_0) un maximum local.
- Si $rt s^2 < 0$, f n'admet pas d'extremum local en (x_0, y_0) .
- Si $rt s^2 = 0$, on ne peut pas conclure directement.

Exemple:

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x, y) = x^2 + y^2 + xy$

Etudier la nature des points critiques de cette fonction.