Exercice 3: Etude structurale de systèmes (1D) et (2D) (Devoir 4)

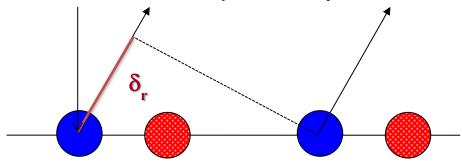
Partie 1 : Chaîne linéaire diatomique

1.a On considère un repère $(0, \vec{i})$, le vecteur de base du réseau s'écrit: $\vec{a} = a\vec{i}$

1.b Le motif est constitué de deux atomes A et B.

1.c L'atome A a pour coordonnée: 0. L'atome B a pour coordonnée: $\frac{a}{4}$.

2.a On calcule la différence de marche entre les rayons diffractés par deux atomes A.



La condition de diffraction par le réseau est:

$$\begin{cases} a.\sin\theta = n\lambda \\ \frac{n\lambda}{a} \le 1 \end{cases}$$

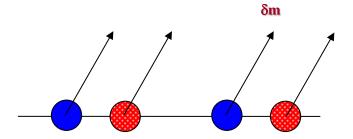
Les valeurs particulières de θ pour lesquelles on observerait des raies de diffraction par le réseau sont telles que:

$$\theta = \sin^{-1}\left(\frac{n\lambda}{a}\right)$$

2.b On calcule la différence de marche entre les rayons diffractés par deux atomes A et B.



Le deuxième système d'interférence se combine avec le premier. Considérons les quatre premiers rayons.



1er cas: $\delta_r = n\lambda$ et $\delta_m = n'\lambda$

(1) et (3) interférence constructive

(1) et (2) interférence constructive

(2) et (4) \equiv (1) et (3) interférence constructive

(1)+(2)+(3)+(4) donneront une interférence constructive $I_{totale} \neq 0$.

Les spots de diffraction du réseau sont renforcés, leur intensité augmente, par la diffraction du motif.

2^{eme} cas:
$$\delta_r = n\lambda$$
 et $\delta_m = \frac{2n'+1}{2}\lambda$

- (1) et (3) constructive
- (1) et (2) destructive
- (2) et (4) constructive
- (1)+(2)+(3)+(4) donneront une interférence constructive $I_{totale} \neq 0$.

3ème cas:
$$\delta_r = \left(\frac{2n+1}{2}\right) \lambda \;\; {
m et} \; \delta_m = n' \lambda$$

- (1) et (3) destructive
- (1) et (4) destructive
- (1) et (2) constructive
- (1)+(2)+(3)+(4) sera constructive $I_{totale} \neq 0$.

4eme cas:
$$\delta_r = \left(\frac{2n+1}{2}\right)\lambda$$
 et $\delta_m = \left(\frac{2n'+1}{2}\right)\lambda$

Quand l'interférence des rayons (1) - (3) est destructive et l'interférence (1) - (2) est destructive le système de diffraction est détruit.

3.a On calcule le facteur de structure de la chaîne. Par définition:

$$F(h,k,l) = \sum_{j} f_{j} exp[-2i\pi(hx_{j} + ky_{j} + lz_{j})]$$

Qui se réduit, dans le cas d'un réseau linéaire, à

$$F(h) = \sum_{j} f_{j} exp[-2i\pi(hx_{j})]$$

$$F(h) = f_{A} exp[-2i\pi(hx_{A})] + f_{B} exp[-2i\pi(hx_{B})]$$

$$F(h) = f + f exp\left[-ih\frac{\pi}{2}\right]$$

3.b L'intensité diffracté est proportionnelle à $||F(h)||^2$.

On remarque que dans le cas où la chaîne est formée d'un seul atome le facteur de structure et l'intensité du rayon diffracté s'écrit:

$$F(h) = f \text{ et } I_0(h) \propto f2$$

• h = 4p avec $p \in \mathbb{N}$

$$F(h) = 2f$$
 et $I(h) \propto 4f^2 \propto 4I_0(h)$

• h = 4p + 1 avec $p \in \mathbb{N}$

$$F(h) = \sqrt{2}f$$
 et $I(h) \propto 2I_0(h)$

• h = 4p + 2 avec $p \in \mathbb{N}$

$$F(h) = 0$$
 et $I(h) = 0$

• h = 4p + 3 avec $p \in \mathbb{N}$

$$F(h) = \sqrt{2}f$$
 et $I(h) \propto 2I_0(h)$

On retrouve ainsi les résultats de la question précédente.

4.a Le réseau est linéaire.

Le motif est —C=C, il est formé par deux atomes de carbone, qui ont le même facteur de forme.

4.b On calcule

$$\frac{\lambda}{a} = 0,3$$

 $\frac{\lambda}{a}=0.1$ les angles vérifiant la condition de diffraction sont donnés par:

$$\sin \theta = n \frac{\lambda}{a}$$

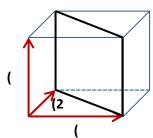
Comme $\sin \theta \le 1$, on déduit que $n \le 10$. D'où le tableau:

n	1	2	3	4	5	6	7	8	9	10
sin θ	0,1	0,2	0,3	0,4	0,5	0,6	0,7	8,0	0,9	1
θ (°)	5,74	11,53	17,45	25,50	30	36,86	44,42	53,13	64,16	90
F	$\sqrt{2} f$	0	$\sqrt{2} f$	2 <i>f</i>	$\sqrt{2} f$	0	$\sqrt{2} f$	2 <i>f</i>	$\sqrt{2} f$	$\sqrt{2} f$
I/I ₀	2	0	2	4	2	0	2	4	2	0

Partie 2 : Diffraction par un réseau plan d'atomes de nickel

1. Etude du réseau plan

a. Le plan d'indices (110) est représenté en trait noir.



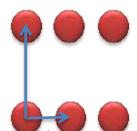
c. On choisit une base orthonormée $(\vec{i}, \vec{j}, \vec{k})$.

$$\vec{a}_1 = a_1 \vec{i}$$

$$\vec{a}_2 = a_2 \vec{j}$$

$$\vec{a}_3 = \vec{k}$$

b. La distribution des atomes :



Réseau rectangulaire primitif

$$a_1 = a \frac{\sqrt{2}}{2} = 2,49 \text{ Å}$$

$$a_2 = a = 3,52 \text{ Å}$$

$$\phi = 90^{\circ}$$

On applique la définition du réseau réciproque :

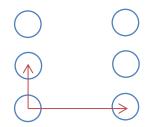
$$\vec{b}_1 = \frac{2\pi}{a_1} \vec{i}$$
 $b_1 = 2,52 \,\text{Å}^{-1}$

$$b_1 = 2,52 \,\text{Å}^{-1}$$

$$\vec{b}_2 = \frac{2\pi}{a_2} \vec{j}$$

$$\vec{b}_2 = \frac{2\pi}{a_2} \vec{j}$$
 $b_2 = 1,78 \,\text{Å}^{-1}$

$$\vec{b}_3 = \vec{k}$$



En fait le réseau réciproque est un faisceau de droites parallèles et normales au plan (\vec{b}_1, \vec{b}_2) . Dans ce plan la trace de ces droites sont des points que l'on déduira de l'origine par des translations $\vec{G} = h\vec{b}_1 + k\vec{b}_2.$

2. Diffraction d'un rayonnement par ce réseau plan

a.
$$k = \frac{2\pi}{\lambda}$$

A.N.
$$k = 4,46 \,\text{Å}^{-1}$$

b. La condition de diffraction de Laue :

le vecteur $\overrightarrow{k'} - \overrightarrow{k}$ est un vecteur du réseau réciproque, Il existe un vecteur \overrightarrow{G} du réseau réciproque tel que:

$$\Delta \vec{k} = \vec{G}$$

Ce qui équivaut à écrire :

$$2\vec{k}.\vec{G} + \vec{G}^2 = 0$$

c. Construction d'Ewald

- On trace le vecteur \vec{k} parallèlement au faisceau incident.
- Son extrémité est placée sur un nœud du réseau réciproque.
- On trace une de sphère dont le rayon $R = ||\vec{k}||$.
- Les nœuds du réseau réciproque, interceptés par la sphère d'Ewald, donneront les indices des réflexions susceptibles d'être observées.
- **d.** D'après les questions **a.** et **c.** le rayon de la sphère est $R = 4,46 \text{ Å}^{-1}$.
- e. L'intersection entre la sphère et le réseau réciproque est un cercle de centre C et de rayon $4.46 \, \text{Å}^{-1}$ représenté sur la figure ci-dessous.

f. Les nœuds interceptés par la sphère d'Ewald sont les nœuds relatifs aux réflexions (3,2) et $(3,\overline{2})$. **g.** L'angle (\vec{k}',\vec{k}) est égale au double de l'angle de diffraction de Bragg. On déduit l'angle de diffraction de Bragg :

$$\theta = \sin^{-1} \left(\frac{\|\vec{G}\|}{2\|\vec{k}\|} \right)$$
$$\theta = 69.5^{\circ}$$

Construction d'Ewald

