Exercices supplémentaires

Exercice I: Particule de spin $\frac{1}{2}$ dans un puit de potentiel infini(Examen 2018/2019)

On considère une particule de masse m, de spin $s=\frac{1}{2}$ et de moment magnétique $\vec{M}=\gamma\vec{S}$ se déplaçant sur l'axe Ox dans un puit de potentiel infini de largeur a. Cette particule est soumise à un champ magnétique constant suivant \vec{e}_x : $\vec{B}=B\vec{e}_x$.

L'hamiltonien de cette particule est $H = H_0 + \omega S_x$ où H_0 repréente l'énergie cinétique de la particule et ωS_x son énergie d'interaction avec le champ magnétique.

On donne les valeurs et vecteurs propres de H_0 dans l'espace \mathcal{E}_x du mouvement orbital:

$$H_0 \mid \varphi_n \rangle = E_n \mid \varphi_n \rangle$$
 où $E_n = \frac{\pi^2 \hbar^2}{2ma^2} n^2$ avec $n = 1, 2, ..., \infty$

L'espace des états de cette particule est $\mathcal{E} = \mathcal{E}_x \otimes \mathcal{E}_s$ où \mathcal{E}_s est l'espace des états de spin engendré par la base $\{|+>,|->\}$ des vecteurs propres de S_z correspondants aux valeurs propres $\frac{\hbar}{2}$ et $-\frac{\hbar}{2}$ respectivement. Une base de \mathcal{E}_x est formée des vecteurs propres $|\varphi_n\rangle$ de H_0 .

- 1- Donner l'expression de ω en fonction de B.
- 2- Soient

$$S_x = \frac{\hbar}{2} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \qquad S_y = \frac{\hbar}{2} \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right)$$

les matrices représentant les composantes S_x et S_y de \vec{S} dans la base $\{|+>,|->\}$ de \mathcal{E}_s . Calculer, dans \mathcal{E}_s , les valeurs propres de S_x et S_y ainsi que les vecteurs propres correspondants. On note par $|+>_x$ et $|->_x$ les vecteurs propres de S_x et par $|+>_y$ et $|->_y$ les vecteurs propres de S_y .

- **3-** Dans \mathcal{E} on choisit la base $\{|\varphi_n>|+>, |\varphi_n>|->\}$ où n=1,2,3,... Quelles sont, dans \mathcal{E} , les valeurs propres de S_x et S_y . Quels sont leurs degrés de dégénéréscence? Donner sans calculs les vecteurs propres de S_x et S_y correspondant à leurs difféentes valeurs propres.
- 4- Quels sont les vecteurs propres de H et quelles sont les valeurs propres correspondantes ?
- 5- À t=0, l'état de la particule est décrit par le vecteur

$$| \psi(0) > = \frac{1}{\sqrt{3}} [(| \varphi_1 > + | \varphi_2 >) | + > + | \varphi_1 > | - >]$$

- 5-1 Vérifier que $|\psi(0)\rangle$ est normé.
- 5-2 Calculer $| \psi(t) > \text{pour } t > 0$. On pose $\omega_n = \frac{E_n}{\hbar}$.
- **6** À l'instant t, on mesure S_z ,
- 6-1 Quels sont les résultats possibles et quelles sont les probabilités correspondantes.
- 6-2 Calculer les valeurs moyennes $\langle S_x \rangle(t), \langle S_y \rangle(t)$ et $\langle S_z \rangle(t)$.
- 6-3 Décrire le mouvement du vecteur $\langle \vec{S} \rangle (t)$. Donner une interprétation physique de ce mouvement.
- 7- À l'instant t, on fait une mesure de S_z et on trouve la valeur $-\frac{\hbar}{2}$. On effectue, juste après, une mesure de l'énergie de la particule. Quels résultats peut-on trouver et avec quelles probabilités ?

Exercice II: Electron dans un champ magnétique. Niveaux de Landau

Un électron se déplaçant sur le plan xOy est soumis à un champ magnétique \vec{B} constant dirigé suivant l'axe Oz. L'Hamiltonien de ce système est donné par $H = \frac{1}{2m}(\vec{P} + e\vec{A})^2$, où \vec{A} est le potentiel vecteur associé au champ \vec{B} .

- 1- Vérifier qu'un choix possible de \vec{A} est $A_x = 0, A_y = B_x, A_z = 0$.
- **2-** Donner l'expression de H pour ce choix de \vec{A} .
- 3- On définit les opérateurs

$$Q = \frac{1}{m\omega}(P_y + eB_X) \qquad P = P_x$$

- où $\omega = \frac{eB}{m}.$ 4- Calculer le commutateur de Q et P.
- 5- Donner l'expression de H en fonction de Q et P ; en déduire les niveaux d'énergie. Ces niveaux portent le nom de niveaux de Landau.