Electronique Analogique, Série n°2

9.1*k*Ω**≶**

Fig.2

 Q_1

 $9.1k\Omega$

 Q_2

 $4.3k\Omega$

Exercice 1:

Pour les circuits suivants, déterminer I_C et V_{CE} . Les transistors sont caractérisés par $\beta=50$, $\left|V_{BE(active)}\right|=0.7V$ en mode normal/saturation

et $|V_{CE(sat)}|$ 0.2V.

Exercice 2:

On considère le circuit de polarisation par pont

diviseur de la figure 1.

On donne
$$V_{CC}=5V$$
 , $R_E=0.2k$, $R_C=1k$, $\beta=100$ et $V_{BE}=0.7V$.

1°) Si $R_1 + R_2 = 11.25k$, déterminer R_1 et R_2 de sorte que le point de fonctionnement soit au «milieu de la droite de charge ».

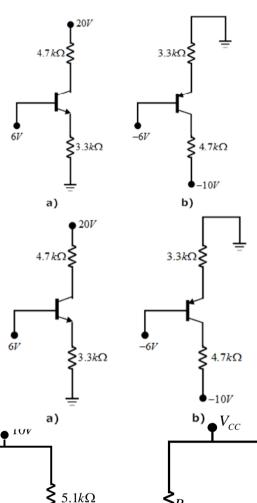
2°) Les résistances R_1 et R_2 étant fixées, calculer la variation I_C pour une augmentation de température de 20°C. A la température initiale

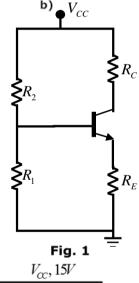
 $V_{BE} = 0.7V \text{ et } I_{CB0} = 5\mu A.$

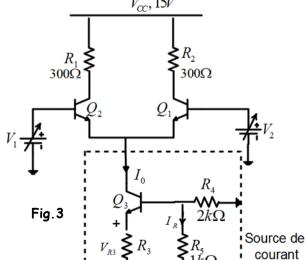
On note que la tension V_{BE} diminue quand la température augmente à raison de 2mV/°C et I_{CB0} double de valeur pour chaque augmentation de 10°C.

Les transistors Q1 et Q2 sont caractérisés par $\beta=100$. La tension $|V_{BE}|=0.7V$. Déterminer V_{B1} , V_{CE1} et V_{CE2} .

Exercice 4 : On considère l'amplificateur


différentiel polarisé par une source de courant constant I_0 (cf. Fig. 3)


Données : V_1 et V_2 varient entre -5V et +5V.Q1, Q2 et Q_3 sont des transistors bipolaires identiques caractérisés par $\beta=100$, $V_{BE}=0.5V$, $V_{CESat}=0.2V$.


- 1. Déterminer la valeur de la résistance R_3 pour que la source de courant ait une intensité $I_0 = 50mA$
- 2. On suppose que $I_O = 50 mA$. Déterminer pour les cas suivants :

a)
$$V_1 = 0V$$
, $V_2 = 0V$, b) $V_1 = -5V$, $V_2 = 0V$, c) $V_1 = 0V$, $V_2 = -2V$

100kΩ**≷**

les potentiels $V_{E,Qi}$, $V_{C,Qi}$, $V_{B,Qi}$ et les courants $I_{C,Qi}$ pour i=1,2,3 ainsi que le mode de

fonctionnement de chaque transistor Q_i (mode active, saturé ou bloqué).

Exercice 5:

Soit le circuit amplificateur de la figure 4. Le transistor est caractérisé, en dynamique, par les paramètres hybrides suivants :

$$r_{\pi} = h_{21e} \simeq \beta = 50, h_{11e} = 600\Omega, \ h_{22e} \simeq 0$$

Les capacités sont des courts circuits en régime variable.

A. Interrupteur k à la position

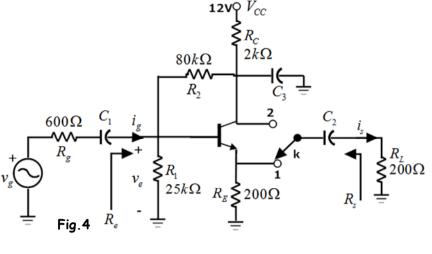
- Etablir le schéma en dynamique et identifier le type de l'amplificateur (EC, CC ou BC)
- 2. Déterminer l'impédance d'entrée R_e , l'impédance de sortie R_s , le gain en tension $A_v = v_s / v_e$ et le gain en courant $A_i = i_s / i_e$.

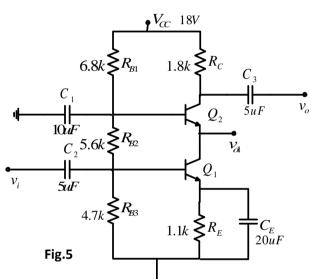
B. Interrupteur k à la position 2 :

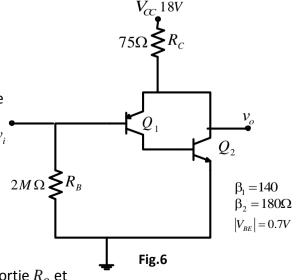
On déconnecte la capacité C_3 . Reprendre les questions 1 et 2.

Exercice 6:

On considère le montage amplificateur cascode de la figure 5. Les transistors Q1 et Q2 sont identiques et caractérisés par $\beta_1=\beta_2=\beta=200$, $V_{BE1}=V_{BE2}=V_{BE}=0.7V$. On suppose une température ambiante.


- 1. Déterminer I_{CQ1} , I_{CQ2} , V_{CEQ1} et V_{CEQ1} . En déduire les paramètres petits signaux des transistors (On négligera $1/h_{22e}$).
- 2. Etablir le schéma en dynamique de l'amplificateur.
- 3. Déterminer le gain en tension $A_v = \frac{v_o}{v_i}$ la résistance d'entrée R_i et la résistance de sortie R_o .
- 4. On connecte une charge de 10k à la sortie. Déterminer le gain en courant A_i de l'amplificateur.


Exercice 7:


Soit l'amplificateur à base de transistors bipolaires en montage Darlington de la figure 6.

La température est supposée égale à $27^{\circ}C$.

- 1. Déterminer I_{CO1} , I_{CO2} , I_{C} (courant dans R_{C}) et V_{CEO2}
- 2. Déterminer les paramètres petits signaux des transistors. On négligera $1/h_{22e}$
- 3. Etablir le schéma en dynamique de l'amplificateur
- 4. Déterminer la résistance d'entrée R_i , la résistance de sortie R_o et le gain en tension A_v .

