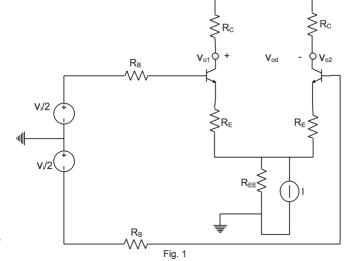
Série 3


SMP5: Electronique Sections A/B

Ampli Différentiel/Ampli Opérationnel

Exercice 1:

On considère l'amplificateur différentiel de la figure 1. Les transistors bipolaires sont identiques et sont caractérisés par : $\beta=100$, $V_{BE}=0.7V,\ V_A=\infty$. On donne : $V_T=26mV,\ R_C=10k\Omega,\ R_E=150\Omega,\ V_{CC}=15V,\ I=1.5mA,\ R_B=5k\Omega,\ R_{EE}=20k\Omega.$ Déterminer :

- 1. le gain $A_d = \frac{v_{od}}{v_i}$ (Utiliser la notion de demi amplificateur)
- 2. la résistance d'entrée différentielle r_{id} .

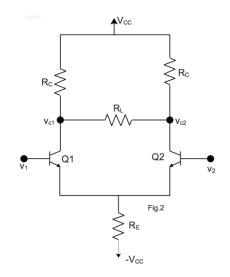
↑ Vcc

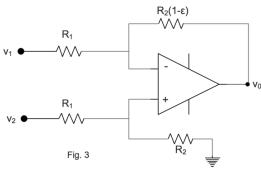
Exercice 2:

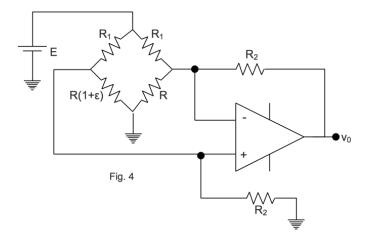
On considère l'amplificateur différentiel de la figure 2. Les transistors Q1 et Q2 sont identiques et sont caractérisés par $\beta=100,\ V_{BE}=0.7V,\ V_A=\infty.$ On donne $V_{CC}=12V,\ R_C=5k\Omega,\ R_E=5.6k\Omega,\ R_L=10k\Omega,\ V_T=kT/e\simeq 26mV.$ Déterminer en utilisant la notion de demi-amplificateur

- 1. le gain A_{id} et la résistance d'entrée r_{id} en mode différentiel.
- 2. le gain A_{cm} et la résistance d'entrée r_{cm} en mode commun.

Exercice 3:


L'amplificateur opérationnel de la figure 3 est supposé idéal. Déterminer en fonction de ε


- 1. le gain A_{id} en mode différentiel.
- 2. le gain A_{cm} en mode commun.
- 3. Comment choisir ε pour que le circuit de la figure 3 fonctionne en amplificateur de différence ?


Exercice 4:

On considère l'amplificateur à pont résistif de la figure 4. L'ampli-Op est supposé idéal.

1. Montrer que la tension de sortie v_0 est proportionnelle à ε dans le cas où $\varepsilon \ll 1$.

