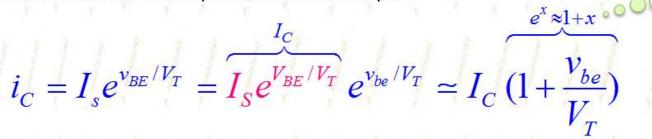

Transistors bipolaires en régime dynamique et amplificateurs

Chapitre 2 part2

1. Modèle dynamique en basses fréquences


Si on applique le signal v_{ho} au circuit ci-dessous, la tension BE instantanée s'écrit :

$$v_{BE} = V_{BE} + v_{be}$$

Le courant collecteur correspondant est donné par :

$$V_{BE} = V_{BE}$$

Les grandeurs statiques sont déterminés à partir du circuit statique si dessus.

Petit

signaux

a. Transconductance

$$i_C \simeq I_C + \frac{I_C}{V_T} v_{be} \longrightarrow i_c = \frac{\overline{I_C}}{V_T} v_{be}$$

 g_m est la transconductance

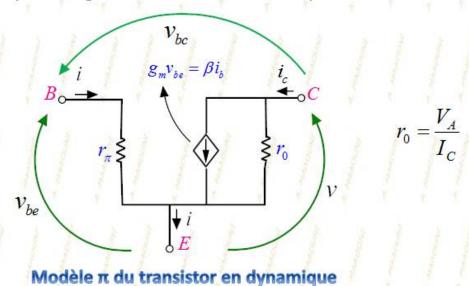
La transconductance est la pente de la tangente au point de fonctionnement de la caractéristique ($i_C - v_{BE}$). On peut donc écrire :

$$g_m = \frac{\partial i_C}{\partial v_{BE}} \bigg|_{i_C = I_C}$$

b. Résistance de base

Le courant de base se déduit à partir de la relation :

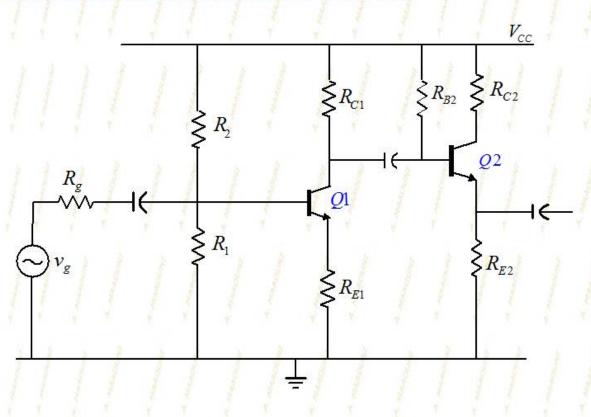
$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{C}}{\beta} + \frac{g_{m}}{\beta} v_{be}$$


$$\underbrace{I_{D}}_{I_{D}} + \underbrace{\frac{g_{m}}{\beta}}_{I_{T}} v_{be}$$

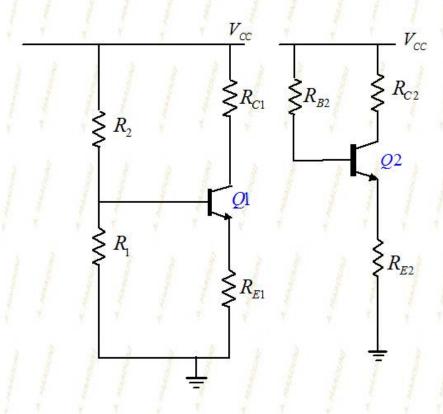
BE Interprétation graphique g

 r_{π} est la résistance vue par la base.

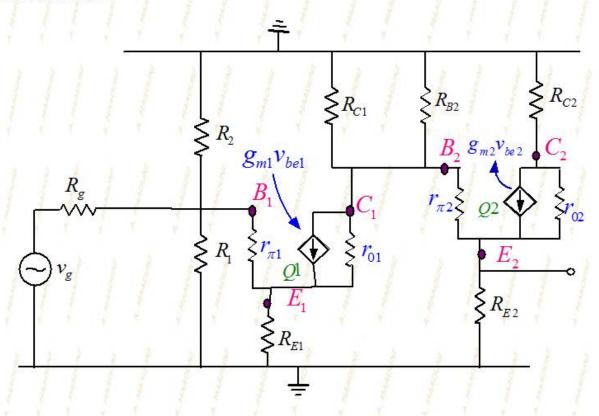
c. Modèle


Vis-à-vis des petits signaux, le transistor est équivalent au circuit suivant :

Si on néglige la résistance de sortie r_0 , le modèle porte le nom de modèle π hybride.

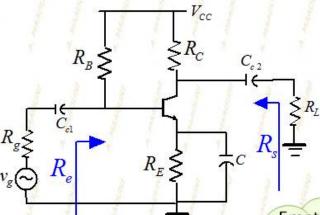

Exemple 1:

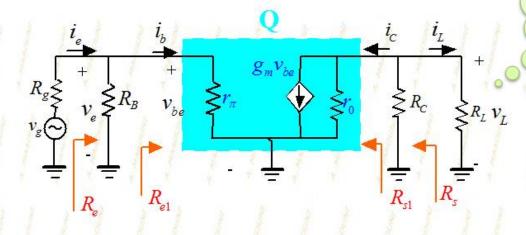
On considère l'amplificateur suivant. Etablir les schémas statique et dynamique. On suppose qu'en régime dynamique et à la fréquence d'utilisation, les condensateurs sont des courts-circuits.


Régime statique

Les condensateurs sont des circuits ouverts, on aura alors 2 étages indépendants :

Régime dynamique


Les condensateurs sont des CC et la tension continue est remplacée par la masse; on aura alors :


On substitue à chaque transistor son schéma dynamique. On verra un peu plus tard comment on arrange de tels circuits.

2. Amplificateurs

2. 1. Amplificateur EC

Le montage en dynamique est représentée ci-dessous :

Emetteur commun à l'entrée et à la sortie

Entrée entre B et E Sortie entre C et E

Résistance d'entrée

$$R_{e} = \frac{v_{e}}{i_{e}} = R_{B} || R_{e1} = R_{B} || \left(\frac{v_{e}}{i_{b}}\right) = R_{B} || r_{\pi} \underset{R_{B} \gg r_{\pi}}{\Xi} r_{\pi}$$

C'est une résistance de quelques kilo (relativement faible)

Gain en tension

$$v_{L} = -(R_{L} || R_{C} || r_{0}) g_{m} v_{be} = (R_{L} || R_{C} || r_{0}) g_{m} v_{e}$$

$$A_{v} = \frac{v_{L}}{v_{e}} = -(R_{L} || R_{C} || r_{0}) g_{m}$$

Le gain à vide se déduit du gain en tendant la charge $R_L \rightarrow \infty$

$$A_{v0} = \frac{v_L}{v_e}\bigg|_{R_L \to \infty} = -(R_C || r_0) g_m$$

Le gain composite est défini par :

$$A_{vc} = \frac{v_L}{v_g} = \frac{v_L}{v_e} \times \frac{v_e}{v_g} = A_v \times \frac{R_B \parallel r_\pi}{R_B \parallel r_\pi + R_g} \simeq A_v \times \frac{r_\pi}{r_\pi + R_g}$$

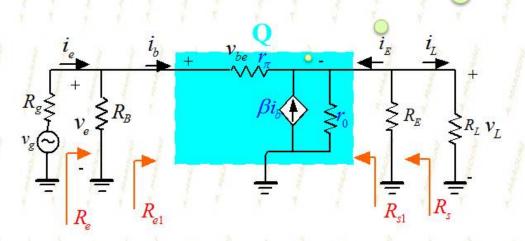
L'amplificateur en EC est capable de réaliser un gain de l'ordre de quelques centaines.

Impédance de sortie

C'est l'impédance du générateur de Thévenin vue par la sortie. En éteignant la tension v_e, la tension BE est nulle; il s'en suit que :

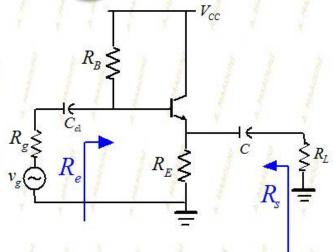
$$R_s = R_{s1} || R_C = r_0 || R_C \simeq R_C, \quad r_0 \gg R_C$$

Gain en courant


$$A_{i} = \frac{i_{L}}{i_{e}} = \frac{v_{L}}{R_{L}} \times \frac{R_{e}}{v_{e}} = A_{v} \frac{R_{e}}{R_{L}} = -g_{m}(R_{L} \parallel r_{0} \parallel R_{C}) \times \frac{r_{\pi} \parallel R_{B}}{R_{L}}$$

Gain en courant en Court circuit

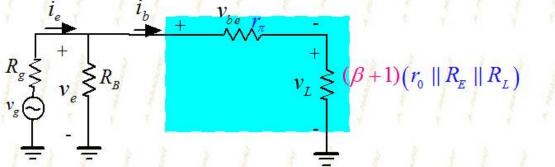
$$A_{icc} = \frac{i_L}{i_e} \bigg|_{R_L \to \infty} - g_m \times r_\pi \parallel R_B \simeq -g_m r_\pi$$


2. 2. Amplificateur Collecteur Commun

Le montage en dynamique est décrit ci-dessous

Collecteur commun à l'entrée et à la sortie

Entrée entre B et C Sortie entre E et C


Résistance d'entrée

$$R_{e} = R_{e1} || R_{B} = \frac{v_{bc}}{i_{b}} || R_{B}$$

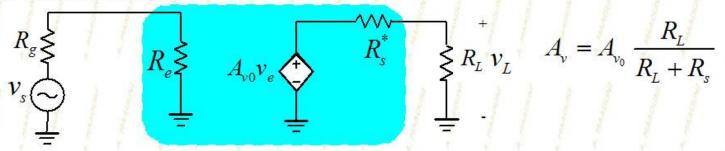
$$R_{e_{1}} = \frac{v_{be}}{i_{b}} + \frac{v_{ec}}{i_{b}} = r_{\pi} + (\beta + 1)(r_{0} || R_{E} || R_{L})$$

Gain en tension

Compte tenu de de la loi des nœuds, on se ramène facilement au diviseur de tension suivant : i i v

On en déduit le gain en tension :

$$A_{v} = \frac{v_{L}}{v_{e}} = \frac{(\beta + 1)(r_{0} \parallel R_{E} \parallel R_{L})}{(\beta + 1)(r_{0} \parallel R_{E} \parallel R_{L}) + r_{\pi}}$$


Le gain à vide est donné par :

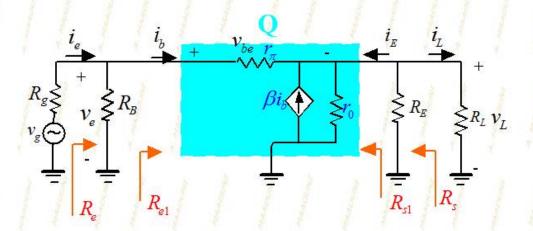
$$A_{v0} = \frac{v_L}{v_e}\bigg|_{R_t \to \infty} = \frac{(\beta + 1)(r_0 \parallel R_E)}{(\beta + 1)(r_0 \parallel R_E) + r_\pi}$$

Les tensions d'entrée et de sorties sont en phases et le gain proche de l'unité

Impédance de sortie

Un moyen plus simple de déterminer l'impédance de sortie consiste à utiliser le schéma équivalent du circuit vue par la sortie :

Connaissant les gains de tension à vide et avec charge, on obtient :


$$R_s^* = \left(\frac{r_{\pi}}{\beta + 1}\right) || \left(r_0 || R_E\right)$$

L'impédance de sortie de l'amplificateur EC est obtenue à partir de R_s^* en ajoutant à r_π la résistance $R_s \mid\mid R_R$

$$R_{s} = \left(\frac{r_{\pi} + R_{B} \parallel R_{g}}{\beta + 1}\right) \parallel \left(r_{0} \parallel R_{E}\right), \qquad R_{s_{1}} = \left(\frac{r_{\pi} + R_{B} \parallel R_{g}}{\beta + 1}\right) \parallel r_{0}$$

Cette résistance est faible (compte tenu du fait que $\beta >>1$)

Gain en courant

$$\frac{i_L}{i_b} = \frac{r_0 \mid\mid R_E}{r_0 \mid\mid R_E + R_L} (\beta + 1)$$
 Diviseur de courant

$$\frac{i_b}{i_e} = \frac{R_B}{R_B + r_\pi + (\beta + 1)(r_0 \parallel R_E \parallel R_L)}$$
 Diviseur de courant

Donc:
$$A_{I} = \frac{i_{L}}{i_{e}} = \frac{R_{B}}{R_{B} + r_{\pi} + (\beta + 1)(r_{0} \parallel R_{E} \parallel R_{L})} \frac{r_{0} \parallel R_{E}}{r_{0} \parallel R_{E} + R_{L}} (\beta + 1)$$

Si
$$R_{\scriptscriptstyle B} \gg R_{\scriptscriptstyle e1} \& r_{\scriptscriptstyle 0} \parallel R_{\scriptscriptstyle E} \gg R_{\scriptscriptstyle L}$$
 $A_{\scriptscriptstyle I} \simeq \beta + 1$ fort Gain en courant

2. 3. Amplificateur Base Commune

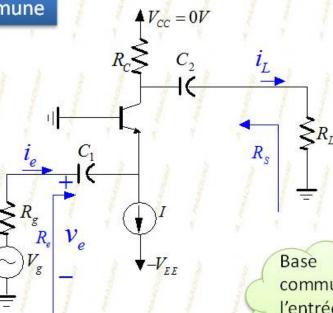
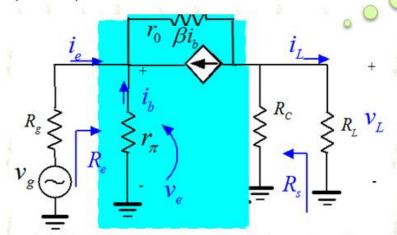



Schéma dynamique

Base commune à l'entrée et à la sortie

Entrée entre E et B Sortie entre C et B

Déterminer :

- Le gain en tension A_{ν}
- Le gain en courant A_i
- La résistance d'entrée R_i
- La résistance de sortie R
 - Comparer ces caractéristiques avec celles des deux montages EC et CC.

Pr. Maaouni