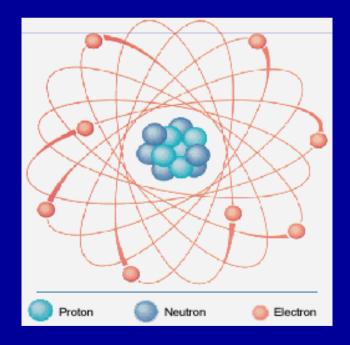
Eléments de Physique Nucléaire



SOMMAIRE

Chapitre I : Caractéristiques générales du Noyau

Chapitre II : Énergie de liaison du Noyau

Chapitre III:
Transformations radioactives

Chapitre IV : Réactions Nucléaires

Chapitre V : Interaction Rayonnement- Matière

Chapitre II : Énergie de liaison du Noyau

I - Masse - Énergie de liaison

- 1) Masse des noyaux excès de masse
- 2) Spectromètre de masse principe
- 3) Énergie de liaison courbe d'Aston

II - Modèle de la Goutte Liquide

- 1) Relation de Bethe et Weizsäcker
- 2) Noyaux stables Nombres magiques
- 3) Insuffisances du modèle

I - Masse - Énergie de liaison

1) Masse des noyaux – excès de masse

- □ Au premier ordre la masse atomique M(A,Z) d'un élément est donnée par le nombre de masse A
- \square Mais en général, la masse réelle d'un atome diffère de A. Cette différence est nommée « excès de masse » $\Delta M(Z,A)$:

$$\Delta M(Z,A)_{u} = M(Z,A)_{u} - A_{x(Iu)}$$

l'excès de masse peut aussi être exprimé en MeV :

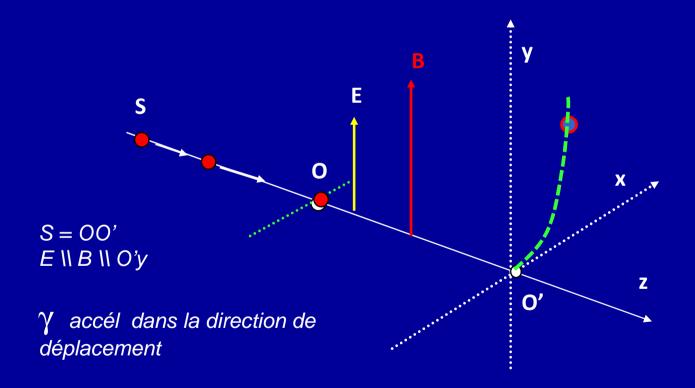
$$\Delta M(Z,A)_{(MeV)} = M(Z,A)_{(MeV)} - 931,5 A$$

□ Les masses atomiques M(Z,A) peuvent être déterminées avec précision à l'aide de spectromètres de masse ou à partir des désintégrations radioactives et des réactions nucléaires

Mesure des masses atomiques : la spectrométrie de masse

Action combinée d'un champ électrique E et d'un champ magnétique B sur des particules <u>chargées</u> pour les séparer suivant la valeur du <u>rapport de leur charge q et de leur masse m</u> : (q / m) .

Atomes neutres ions de vitesses V différentes propagation pénétration dans la zone où s'exercent les champs E et B.



□ dans le cas ou seul le champ E est appliqué :

$$\vec{F} = q.\vec{E} = m \vec{\gamma}$$
 \longrightarrow $\gamma = E.\frac{q}{m}$

Accélération communiquée à la particule dans la direction parallèle à O'y .

La déviation y de la trajectoire s'écrit : $y = \frac{1}{2} \gamma t^2$ et puisque $t^2 = \frac{s^2}{v^2}$ $y = \frac{1}{2} \frac{qE}{m} \frac{s^2}{v^2}$

$$y = \frac{1}{2} \frac{qE}{m} \frac{s^2}{v^2}$$

□ avec B seul:

$$\vec{F} = q(\vec{v} \wedge \vec{B}) \longrightarrow |\vec{F}| = q.v.B$$

Pour de faibles déviations F est // à Ox et $x = \frac{1}{2} \gamma t^2$ avec $\gamma = \frac{q}{m} B.v$

$$\longrightarrow$$

$$x = \frac{1}{2} \frac{qB}{m} \frac{s^2}{v}$$

□Quand E et B sont appliqués simultanément :

L'ion positif est dévié en un point (x,y) tel que les deux relations précédentes soient vérifiées.

En éliminant la vitesse V entre x et y on obtient la fonction y = f(x) qui est l'équation de la trajectoire :

$$y = \left(\frac{2 E}{s^2 B^2}\right) \frac{m}{q} x^2$$

Remarques:

- 1) Sur l'écran xO'y tous les ions ayant même masse et même charge mais des vitesses différentes se placent sur les différents points de la parabole
- 2) Les ions ayant des rapport q/m différents se placeront sur des paraboles différentes. Chaque arc de parabole est donc caractéristique d'un rapport q/m

2) Énergie de liaison

La masse m (A,Z) d'un noyau est inférieure à la somme des masses de Z protons et de N neutrons :

$$m (A,Z) < Z.m_p + N.m_n$$

Il y a donc un <u>défaut de masse ∆m(Z,A)</u> défini par :

$$\Delta m(Z,A) = (Z.m_p + N.m_n) - m(A,Z)$$

Cette différence est toujours positive. Exprimée en unité d'énergie (MeV) elle est appelé *énergie totale de liaison* :

$$B_{tot}(A,Z) = \Delta m(Z,A).c^2$$

B_{tot}(A,Z) représente le travail nécessaire pour dissocier les nucléons du noyau.

et
$$m(A,Z) = [Z.m_p + N.m_n] - B_{tot}(A,Z)/c^2$$

Remarque 1:

Les énergies de liaison des noyaux sont en MeV, alors que celle des électrons dans les atomes sont de l'ordre de l'eV. Il y a donc un <u>facteur de 10⁶ entre l'énergie nucléaire et l'énergie chimique</u>, pour une même masse de réactifs.

Remarque 2:

En pratique on utilise les masses atomiques plutôt que les masses nucléaires :

$$M (A,Z) = m (A,Z) + Z.m_e - B_e/c^2$$

où m_e est la masse de l'électron et B_e la valeur absolue de l'énergie de liaison des Z électrons. B_e , de l'ordre de l'eV est négligeable :

$$B_{tot}(A,Z) = [Z.m_H + N.m_n - M(A,Z)].c^2$$

où M(A,Z) est la masse atomique de l'élément X(A,Z) et m_H celle de l'hydrogène

Exemple: Energie de liaison du deuton

Le noyau le plus simple est le deuton (d) constitué d'un proton et d'un neutron.

Sa masse est $m_d = 2,013554 u$

Calculons
$$(m_p + m_n) = 1,007277 u + 1,008665 u = 2,015942 u$$

On voit que:
$$m_d < (m_p + m_n)$$

Le défaut de masse est $\Delta m(Z,A) = [(m_p + m_n) - m_d] = 0,002388 u$

ce qui correspond à une énergie de liaison : B(d) = 2,225 MeV.

Cette énergie sert à lier les deux particules ensemble.

Pour les séparer, c'est à dire vaincre la force nucléaire, il faut fournir une énergie minimale de 2,225 MeV.

3) Énergie de séparation

L'énergie de séparation d'un nucléon ($S_p(Z,N)$ et $S_n(Z,N)$) est L'énergie nécessaire pour enlever un proton ou un neutron du noyau.

Pour un proton :

$$S_p(Z,N) = M_{noy}(Z-1, N) + m_p - M_{noy}(Z,N)$$

compte tenu de la définition de l'énergie de liaison B:

$$S_p(Z,N) = B(Z,N) - B(Z-1, N)$$

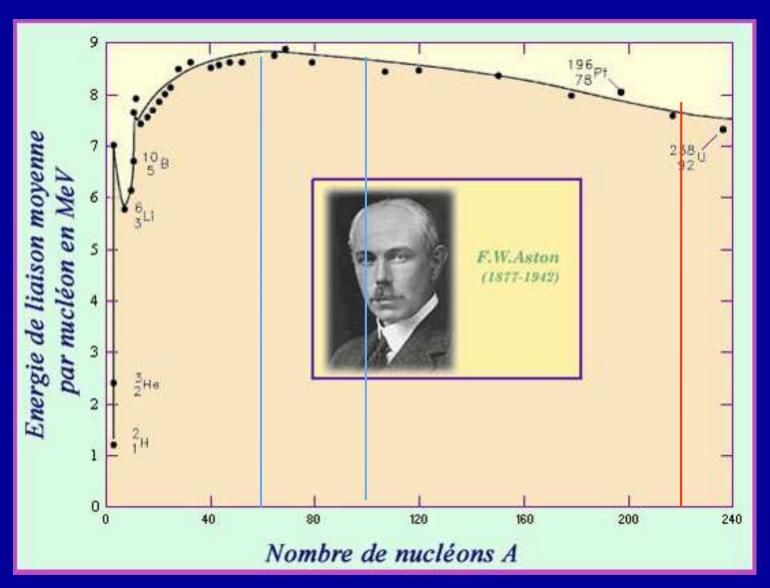
Pour un neutron:

$$S_n(Z,N) = M_{nov}(Z, N-1) + m_n - M_{nov}(Z,N)$$

soit en termes d'énergie de liaison:

$$Sn(Z,N) = B(Z,N) - B(Z, N-1)$$

<u>Énergie de liaison moyenne par nucléon</u> $B_{moy}(A,Z) = B_{tot}/A$



L'énergie de liaison par nucléon représente l'énergie à dépenser en moyenne pour arracher un nucléon d'un noyau. C'est un étalon de la stabilité d'un noyau.

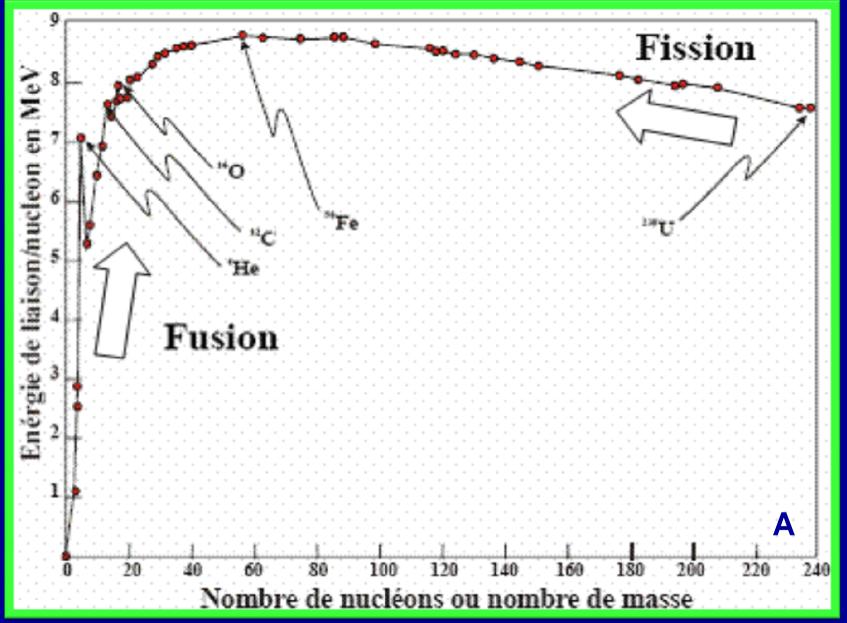
Commentaire de la courbe de ASTON

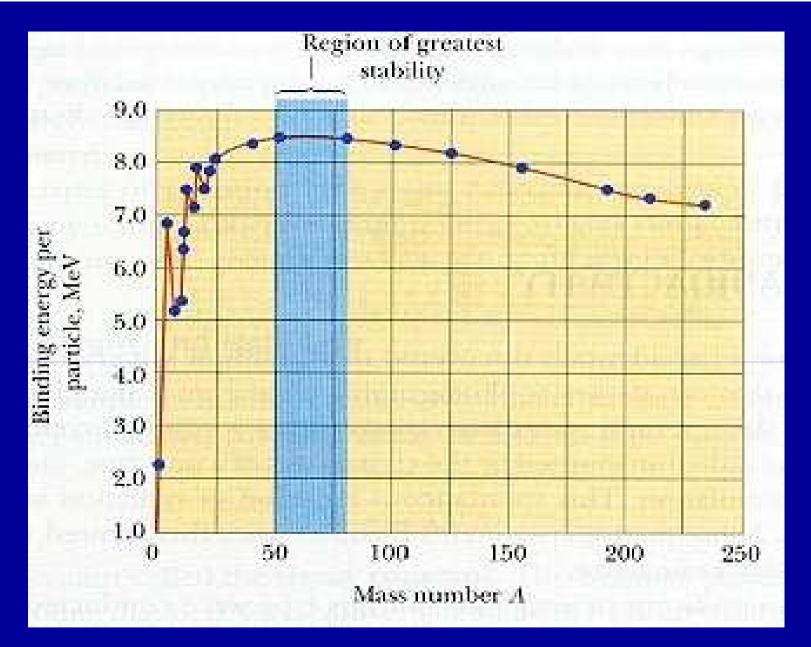
- a) Les noyaux très légers sont peu liés, à l'exception de l'hélium-4 (α) dont l'énergie de liaison de 7 MeV par nucléon est très supérieure à celle de ses voisins, deutérium, tritium, hélium-3, lithium.
- b) Pour 30 <A<210 B_{moy} est quasiment indépendant de A, avec une valeur de l'ordre de 8 MeV par nucléon. Ceci peut-être interprété par la propriété de saturation des forces nucléaires : un nucléon donné n'est pas lié de la même façon à tous les nucléons du noyau.
- c) B_{moy} passe par un <u>maximum très aplati de 8,7 MeV</u> pour le nickel-62 et diminue ensuite lentement pour atteindre 7,3 MeV pour l'uranium. Ce sont donc les noyaux de masses intermédiaires qui sont les plus liés, donc les plus stables.
- d) Pour les valeurs de A > 80, B_{moy} la décroissance lente de l'énergie de liaison des nucléons résulte de l'augmentation de l'influence de la force coulombienne.
- e) Les nombres « magiques » (2, 8, 20, 28, 50, 82, 126) sont des nombres de protons et/ou de neutrons pour lesquels un noyau est particulièrement stable. Dans le modèle en couche, ces nombres correspondent à un arrangement en couches complètes.

la structure de ⁴He (particule α) est particulièrement stable, comparée à ses voisins : c'est un noyau doublement magique.

	Н	² H	³ H	³ He	⁴ He	⁶ Li	⁷ Li
B (MeV)	0	2.22	8.48	7.72	28.3	32	39.2
B/A (MeV/A)	0	1.11	2.83	2.57	7.07	5.33	5.60

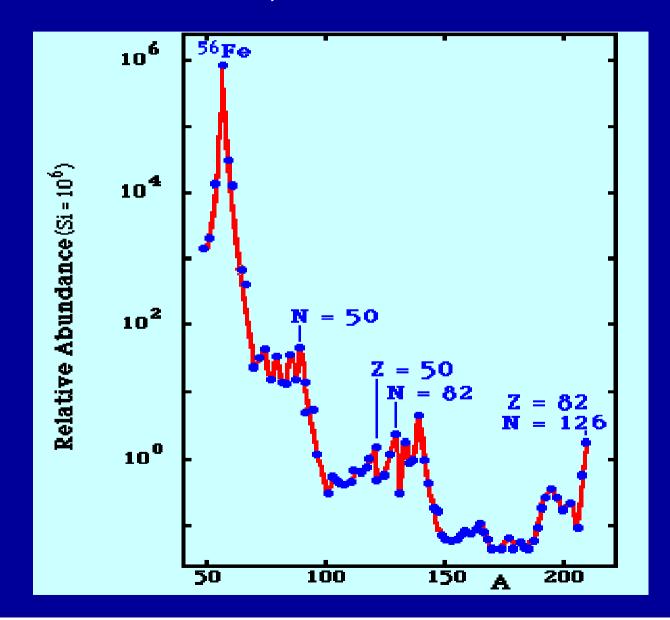
Nous verrons que cette stabilité particulière explique l'émission de particules alpha par des noyaux lourds.





REF. http://llr.in2p3.fr/~mine/noyaux/c1_1.pdf

Les éléments ayant une valeur de Z ou N correspondant a un nombre magique sont plus abondants dans la nature que leurs voisins immédiats



II - Modèle de la Goutte Liquide

- -On veut construire un modèle simple du noyau qui redonne une énergie de liaison en accord avec l'expérience.
- Modèle suggéré par Bohr, par analogie avec la cohésion d'une goutte liquide (ou la propriété de saturation se manifeste aussi).
- -Les hypothèses de base de ce modèle sont :
 - ► le noyau est une matière incompressible (R est proportionnel à A^{1/3})
 - la force nucléaire est la même pour le neutron et le proton (indépendance de charge)
 - ➤ la force nucléaire est à courte portée.

A partir de ces hypothèses <u>Bethe et Weizsäcker</u> ont proposé la formule semi-empirique suivante :

$$B(A,Z) = a_{V}.A - a_{S}.A^{\frac{2}{3}} - a_{C}\frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_{Sy}\frac{(N-Z)^{2}}{A} + \delta(Z,N)$$

Cette relation de Bethe et Weizsäcker fait apparaître cinq termes dans l'énergie de liaison :

<u>le premier terme</u> est *l'énergie de volume* : B/A est presque constant (saturation des f*orces nucléaires*) . C'est la contribution principale apportée à B(A,Z)

<u>le second est l'énergie de surface</u>, qui représente la perte d'énergie de liaison des nucléons de la surface et qui ont donc moins de voisins que ceux situés aux cœur du noyau. Ce terme (dit de tension superficielle) est proportionnel au nombre de nucléons de surface, donc à l'aire de cette surface, c'est à dire à A^{2/3}. Il tend à donner une forme sphérique à la goutte (noyau).

<u>Le terme d'énergie coulombienne</u>: La répulsion électrostatique des protons tend à diminuer B(A,Z). Si on considère le noyau comme une sphère de rayon R de charge Q uniformément répartie (ce qui est approximatif du fait de la présence des neutrons) son énergie électrostatique est :

$$W = \frac{3}{5} \frac{Q^{2}}{R} = \frac{3}{5} \frac{e^{2}Z^{2}}{R_{0}A^{1/3}} = a_{c} \frac{Z^{2}}{A^{1/3}}$$

MAIS ce calcul est inexact : il suppose que la charge de chaque proton est répartie dans toute la sphère de R!!

Correction: un objet de charge Z=1 et de rayon R n'est pas un proton!! Donc l'expression de W contient pour chaque proton, un terme d'énergie intrinsèque égal à 3.e²/5R qui ne correspond à aucun corps physique réel.

Aussi, il faut soustraire ce terme pour les Z protons, pour avoir une énergie d'interaction correcte entre paires de protons.

$$W = \frac{3}{5} \frac{e^2 Z^2}{R} - \frac{3e^2 Z}{5R} = a_c \frac{Z(Z-1)}{A^{1/3}}$$

<u>Le terme d'asymétrie</u>: permet de tenir compte du fait que dans les noyaux stables lourds, N > Z (pour les légers on a $N \approx Z$). L'excès de neutron fournit un supplément d'énergie de liaison nucléaire pour compenser l'augmentation d'énergie de répulsion coulombienne.

<u>L'énergie d'asymétrie</u> est la différence d'énergie nucléaire entre un noyau ayant N neutrons et Z protons et l'isobare construit avec A/2 neutrons et A/2 protons.

<u>Terme d'appariement</u> δ (Z,N) : Les nucléons de même nature ont tendance à se grouper par paires de nucléons à spins antiparallèles.

La force nucléaire n'est donc pas indépendante du spin. Les noyaux pairs-pairs sont plus liés que les noyaux impairs de masses comparables

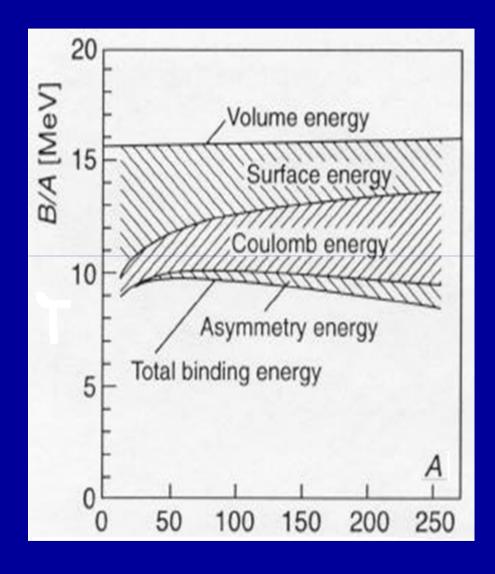
$$\boldsymbol{\delta} (\mathbf{Z}; \mathbf{N}) = \begin{cases} +12 \, \mathbf{A}^{-1/2} (\text{MeV}) & \text{si N et Z pairs} \\ 0 & \text{si A impair} \\ -12 \, \mathbf{A}^{-1/2} (\text{MeV}) & \text{si N et Z impairs} \end{cases}$$

D'où:

$$B(A,Z) = a_{V}.A - a_{S}.A^{\frac{2}{3}} - a_{C}\frac{Z(Z-1)}{A^{\frac{1}{3}}} - a_{Sy}\frac{(N-Z)^{2}}{A} + \delta(Z,N)$$

Avec (en MeV): $a_v = 15.6$; $a_{surf} = 18.5$; $a_c = 0.7$ et $a_{svm} = 23.5$

Contributions relatives à l'énergies de liaison par nucléon en fonction du nombre de masse A (relation de **Bethe et Weizsäcker**)



Équation de la vallée de la stabilité

La formule semi-empirique donnant la masse peut s'écrire :

$$M(A,Z) c^2 = \alpha Z^2 + \beta Z + \gamma . (+/-\delta)$$

$$\alpha = a_c A^{-1/3} + 4a_{sy} A^{-1}$$
 Avec
$$\beta = (M_H - m_n)c^2 - 4a_{sy} \Box - 4a_{sy}$$

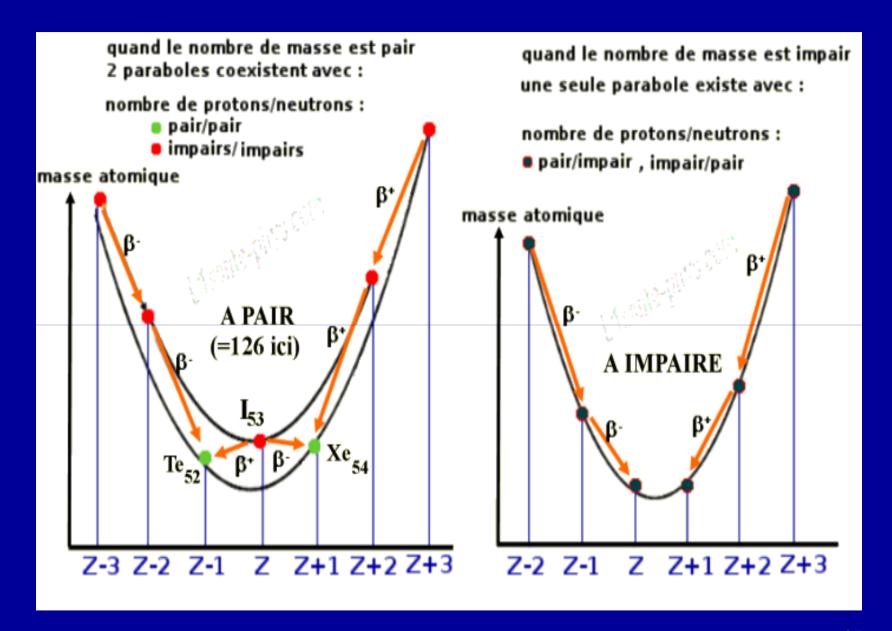
$$\gamma = (M_n c^2 - a_v + a_s A^{-1/3} + a_{sy})A$$

Quand A est constant et impair, c'est l'équation d'une parabole

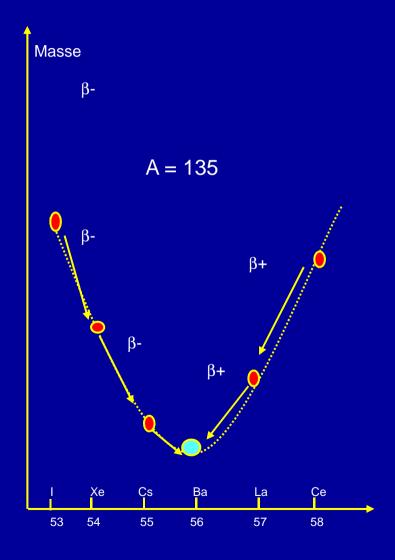
Quand A est constant et pair, l'équation donne 2 paraboles espacées de 2δ

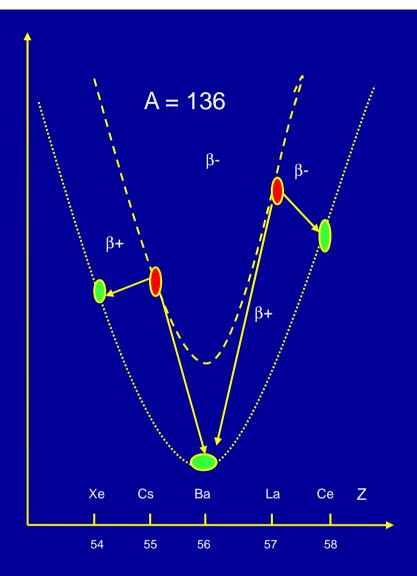
La masse M(A,Z) passe par un minimum d'abscisse Z_{stab} obtenue en annulant la dérivée :

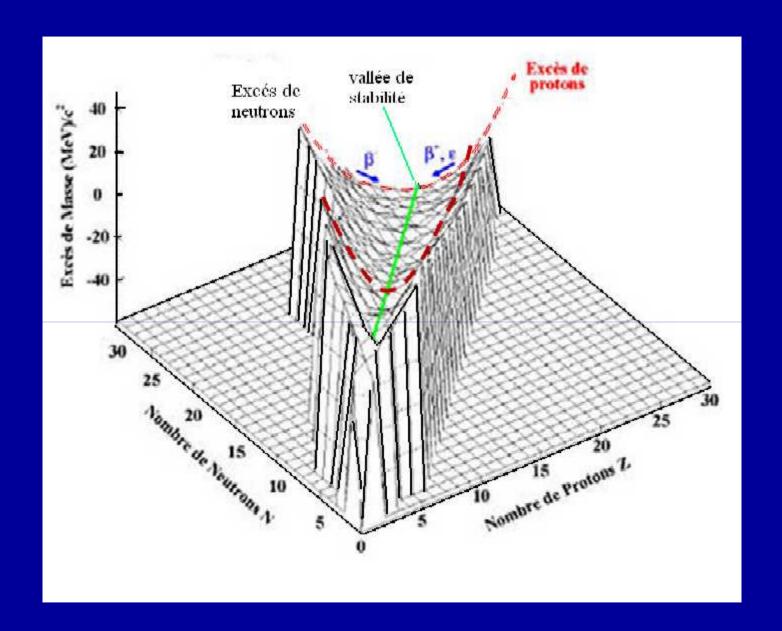
$$\frac{dM(A,Z)}{dZ} = 0$$
 pour $Z_{stab} = \frac{-\beta}{2\alpha} = \frac{47A}{0,7A^{2/3} + 94}$



Autres exemples







Insuffisances du modèle de la goutte liquide:

- pour les noyaux légers (l'image de la goutte liquide n'est pas bien adaptée)
- au voisinage des couches fermées (nombres magiques). Cette fermeture entraîne une plus grande stabilité du noyau qui n'est pas reflétée par la relation de **Bethe et Weizsäcker**
- pour les noyaux très lourds (A > 240) pour lesquels la forme n'est plus sphérique, ce qui inclue un terme correctif important.