Elaboration, Characterization Of LaOHCO₃, La₂O₂CO₃ And La₂O₃ Phases And Their Gas Solid Interactions With CH₄ And CO Gases

Bahcine Bakiz, Frédéric Guinneton, Madjid Arab, Abdeljalil Benlhachemi, Jean-Raymond Gavarria

(a) Institut Matériaux Microélectronique & Nanosciences de Provence, UMR CNRS 6242, Université du SUD Toulon-Var, BP 20132, 83957 La Garde, Cedex, France
(b) Laboratoire Matériaux et Environnement, Faculté des Sciences, Université Ibn Zohr, B.P 8106, 80000, Agadir, Morocco

Abstract: The aim of this study was to compare the reactivity of three lanthanum-based phases in presence of methane CH₄ or carbon monoxide CO gases. The hydroxycarbonate LaOHCO₃ was synthesized from a new specific precipitation route. From this hydroxycarbonate phase, the dioxycarbonate La₂O₂CO₃ and the oxide La₂O₃ were prepared by thermal decomposition process. The polycrystalline samples were characterized by X-ray diffraction, scanning (SEM) and transmission (TEM) electron microscopy. Statistical analyses of grain sizes and morphologies were carried out from TEM analyses. The three samples were then subjected to interactions with air-CH₄ and air-CO flows, at various temperatures. The oxidation of CH₄ and CO into CO₂ interacting with the samples was studied using Fourier Transform infrared spectroscopy. Finally, the reactivity of samples is discussed.

Key words: lanthanum hydroxycarbonate, lanthanum dioxycarbonate, lanthanum oxide, elaboration, microstructural analyses, infrared spectroscopy, gas solid interactions.

I. Introduction

The general aim of this study was to investigate the potential application of ceramics phases in gas sensors or CO₂ absorbing devices for CO₂ capture. The lanthanum based system La₂O₃-CO₂-H₂O might be an interesting candidate for such applications, because the refractory ceramics phase La₂O₃ is sensitive to several types of gases: methane, carbon monoxide, H₂O and CO₂ molecules present in the surrounding atmosphere. At low temperature, the hydroxycarbonate LaOHCO₃ (denoted LHC) [1, 2] or dioxycarbonate La₂O₂CO₃ (denoted LOC) [3-6] could interact with water and CO₂, while at high temperature, the oxide La₂O₃ (L) [7-12] could only interact with the specific gas to be detected (like CH₄ or CO). This lanthanum-based La₂O₂-CO₂-H₂O system could attract a great deal of interest because lanthanum oxide is highly water absorbent and fast carbonation occurs in environments where CO₂ and H₂O are both present [13-15]. In this work, we mainly try to characterize the time- and temperature-dependence of these three L, LOC and LHC phases interacting with air-methane or air-carbon monoxide mixtures. One possible objective is to use the various temperature ranges at which each phase (LHC, LOC, or L) must be stable in the presence of H₂O vapor and/or CO₂ gas so that it can be used as sensitive phase interacting with an additional gas (e.g. methane CH₄ or carbon monoxide CO). For example, at sufficiently low temperatures, the LHC phase would be sensitive to water vapor; at intermediate temperatures, the LOC phase would be sensitive to CO₂ gas; and finally at higher temperatures the L phase would be insensitive to water or CO₂ and could only interact with CO or CH₄.

II. Experimental Details

II-1. Sample preparation

An original precipitation route, initially applied by us to cerium monoxycarbonate elaboration [16], allowed preparing the lanthanum hydroxycarbonate phase. A similar approach was proposed by Qing Li et al. [17] to obtain the cerium based phase CeOHCO₃.

The first step involved mixing three aqueous solutions: (1) La(NO₃)₃•6H₂O, (2) urea CO(NH₂)₂ and (3) polyvinyl - pyrrolidone (PVP) polymer. The initial pH was 3.2. . In the second step, the solution was heated at 80°C in a reactor equipped with a vapor condenser. In all experiments, solutions were permanently agitated by means of a rotating magnet at a fixed rate of 300 rpm. During heating, the temperature was fixed, and the vapors were condensed...
in a water-cooled circuit to prevent evaporation of the aqueous solution. A white solid precipitated. Figure 1 shows the various elaboration steps.

II-2. Thermal analyses

The phase stabilities were determined as a function of the temperature by differential thermal analysis coupled with thermogravimetry (DTA-TG) using a SETARAM TG-DTA92 analyzer.

The resulting hydrated lanthanum hydroxycarbonate powder (95.1 mg) was placed in the analysis cell and heated with a linear temperature gradient from 25°C to 1100°C at a rate of 10°C per minute. Figure 2 reports the DTA-TG results. There are a series of decomposition steps with successive inflexion points at 180°C, 310°C, and a stability domain between 530 and 780°C. Finally, the last stable oxide phase was obtained above 880°C.

The first mass loss is attributed to the loss of water: LaOHCO$_3$•xH$_2$O → LaOHCO$_3$ + xH$_2$O, where x=1

The second mass loss is attributed to the first decomposition step with loss of one H$_2$O and one CO$_2$ from 2 LHC molecules:

2 LaOHCO$_3$ → La$_2$O$_2$CO$_3$ + H$_2$O + CO$_2$

The last mass loss is attributed to the loss of a further CO$_2$ molecular and formation of La$_2$O$_3$ oxide:

La$_2$O$_2$CO$_3$ → La$_2$O$_3$ + CO$_2$

Table 1 compares the experimental and calculated weight losses.

<table>
<thead>
<tr>
<th>Step</th>
<th>Reactions from 2LaOHCO$_3$•H$_2$O to La$_2$O$_3$</th>
<th>Calculated weight loss (%)</th>
<th>Experimental weight loss (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>2 LaOHCO$_3$•H$_2$O → 2 LaOHCO$_3$ + H$_2$O</td>
<td>7.7</td>
<td>7.8</td>
</tr>
<tr>
<td>Step 2</td>
<td>2 LaOHCO$_3$ → La$_2$O$_2$CO$_3$ + H$_2$O + CO$_2$</td>
<td>13.3</td>
<td>13.5</td>
</tr>
<tr>
<td>Step 3</td>
<td>La$_2$O$_2$CO$_3$ → La$_2$O$_3$ + CO$_2$</td>
<td>11.9</td>
<td>11.7</td>
</tr>
</tbody>
</table>

II-3. Characterizations

II-3.1. X-ray diffraction:

X-ray diffraction patterns were recorded on a Siemens-Brucker D5000 diffractometer working in a 0–20 mode, with a copper X-ray source (λ(Kα1) = 1.5406 Å), Soller slabs, and secondary monochromator.

Figure 3 (a-d) shows the X-ray diffraction patterns of:

- the LHC phase obtained after heating the solid precursor at 200°C (Fig. 3a),
- the tetragonal and hexagonal phases of LOC, obtained after heating the precursor at 500°C (Fig. 3b),
- the hexagonal phase of LOC (2), obtained at 620°C (Fig. 3c),
- the hexagonal phase of La$_2$O$_3$, obtained at 750°C (Fig. 3d).
The cell parameters were refined by means of the PARAM software from [18].

![Graph showing X-ray diffraction patterns](image)

Fig.3: X-ray diffraction patterns of: a) LaOHCO₃ (LHC) at 200°C, b) La₂O₂CO₃ (LOC) at 500°C (tetragonal and hexagonal phases), c) La₂O₂CO₃ (hexagonal phase) at 620°C, and d) La₂O₃ at 750°C.

<table>
<thead>
<tr>
<th>Phase/composition</th>
<th>Cell parameters (Å)</th>
<th>Space group</th>
<th>Literature values (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaOHCO₃ at 200°C</td>
<td>a=5.042±0.007</td>
<td>Pmcn</td>
<td>a=5.033</td>
</tr>
<tr>
<td></td>
<td>b=8.574±0.009</td>
<td></td>
<td>b=8.598</td>
</tr>
<tr>
<td></td>
<td>c=7.391±0.008</td>
<td></td>
<td>c=7.401</td>
</tr>
<tr>
<td>La₂O₂CO₃ at 500°C</td>
<td>a=4.059±0.004</td>
<td>I4/mmm</td>
<td>a=4.063</td>
</tr>
<tr>
<td></td>
<td>c=13.499±0.006</td>
<td></td>
<td>c=13.500</td>
</tr>
<tr>
<td>La₂O₂CO₃ at 620°C</td>
<td>a=4.076±0.002</td>
<td>P6₃/mmc</td>
<td>a=4.075</td>
</tr>
<tr>
<td></td>
<td>c=15.964±0.007</td>
<td></td>
<td>c=15.957</td>
</tr>
<tr>
<td>La₂O₃ at 750°C</td>
<td>a=3.938±0.001</td>
<td>P321</td>
<td>a=3.937</td>
</tr>
<tr>
<td></td>
<td>c=6.127±0.002</td>
<td></td>
<td>c=6.129</td>
</tr>
</tbody>
</table>

Table 2: X-ray diffraction data: refined cell parameters of lanthanum-based hydroxycarbonate (LHC), dioxycarbonate (LOC), and oxide (L).

II-3-2. Microstructural analyses: Scanning and Transmission electron microscopy.

Preliminary images were obtained with a Philips XL30 scanning electron microscope (SEM) using a maximum voltage of 20 kV. Transmission electron microscopy (TEM) analyses were carried out using a Tecnai G2 microscope with a LaB6 source, operating at 200 kV.

Figure 4 shows an SEM image of hydroxycarbonate powder containing acicular agglomerates with sizes ranging between 3 to 5 μm. The transmission electron analysis in Figure 5 shows individual needles that resemble spindles with lengths of about 5 μm. The spindle in Figure 5b has two circles designating the two zones on which electron diffraction was performed. The two associated diffraction images of Figure 5c and 5d are similar and they show that one spindle is a pseudo-single crystal with a unique crystalline orientation.

![SEM image of lanthanum hydroxycarbonate (LHC) showing the presence of needles with lengths ranging between 2 and 5 μm.](image)

Fig.4: SEM image of lanthanum hydroxycarbonate (LHC) showing the presence of needles with lengths ranging between 2 and 5 μm.

![TEM images of LHC spindles](image)

Fig.5: a) TEM images of LHC spindles; b) isolated LHC spindle: electron diffraction was performed on the two zones indicated by the two circles; c) and d) TEM electron diffraction of the two LHC spindle zones. The two similar diffraction images indicate that the spindles are pseudo-single crystals with a unique crystalline orientation.

The TEM image of Figure 6 shows that dioxycarbonate (LOC) grains, obtained from thermal
decomposition of LHC powder, have smaller dimensions (lengths of about 100 to 200 nm) with irregular rectangular shapes and that each grain is a pseudo-single crystal.

The TEM image of La$_2$O$_3$ oxide powder obtained from the thermal decomposition of the initial LHC powder shows the presence of small crystals having more regular morphologies, with main dimensions of 150 nm x 150 nm x 250 nm.

The three samples present three types of morphologies and grain sizes. If we assume that each grain is isolated, with the absence of closed agglomerates, the idealized specific surfaces of the L and LOC samples are smaller than the specific surface of the LHC sample. This might play an important role in the catalytic properties. We have performed a statistical analysis of grain sizes using image analyses for each sample and average dimensions were defined. From these analyses, the theoretical specific surfaces $R_{ss} = S/V$ were calculated.

The three samples present three types of morphologies and grain sizes. If we assume that each grain is isolated, with the absence of closed agglomerates, the idealized specific surfaces of the L and LOC samples are smaller than the specific surface of the LHC sample. This might play an important role in the catalytic properties. We have performed a statistical analysis of grain sizes using image analyses for each sample and average dimensions were defined. From these analyses, the theoretical specific surfaces $R_{ss} = S/V$ were calculated.

The shape of the LHC grains has been assimilated to an ellipsoid with two a- and b-axis dimensions. The resulting volume is $V = \frac{4}{3} \pi a b^2$ where a and b are average values of dimensions, and the surface area is:

$$S = 2 \pi b (b+a) \left(\arcsin \frac{e}{b^2 + a^2} \right) / e,$$

where $e = \sqrt{\left(1 - \frac{b^2}{a^2}\right)}$.

III. Solid-Gas Interactions

III-1. Reaction conversion device.

The polycrystalline samples (L, LCO, and LHC) were exposed to air-CH$_4$ and air-CO gas flows in a specific homemade heated cell. The various gas flows pass through each sample disposed in a cylindrical tube as a polycrystalline catalytic wall, heated at a fixed temperature. The emerging gases are then analyzed by Fourier transform infrared (FTIR) spectroscopy, using a FTIR Unicam-Mattson spectrometer working with cube corner technology. The FTIR equipment is used to determine the resulting amount of CO$_2$ after conversion of CH$_4$ or CO in the porous polycristalline wall. This homemade equipment has been described in a previous publication [21]. Figure 8 shows the experimental setup. The reactor is a cylindrical cell in which the sample can be exposed to reactive air-gas flows. The sample temperature is controlled by a thermocouple and stabilized at a given T$_{react}$ value. A fixed mass ($m_0=0.1$ g for each test) of powder is placed between two porous (ZrO$_2$) separators. Blank experiments with these separators were systematically carried out to confirm the absence of activity in the cell itself. The gas flows, controlled by flowmeters (2500 ppm CO in air or CH$_4$ in air), passed through separator 1, then the sample, and finally separator 2, with a fixed slow speed (10 sccm). The reactor is placed in a furnace and heated at temperatures ranging between 150 °C and 525°C.

The reaction conversion effect is revealed by the appearance of the infrared absorption band of CO$_2$. The intensity of the CO$_2$ vibrational band, noted as I(CO$_2$), is assumed to represent the capacity of the solid to convert CH$_4$ or CO into CO$_2$. The conversion
efficiency of the three polycrystalline samples was defined as being proportional to the intensities of the FTIR CO\(_2\) vibrational bands (doublet at 2340 - 2360 cm\(^{-1}\)), resulting from the overall reactions (4) and (4'):
\[
\text{CH}_4 + 2 \text{O}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} \quad (4)
\]
\[
\text{CO} + 1/2\text{O}_2 \rightarrow \text{CO}_2 \quad (4')
\]

To compare the conversion efficiencies of the L, LHC and LOC phases, it has been necessary to apply a specific experimental protocol that permits the analysis of the sole gases produced during a solid-gas reaction and avoids any environmental gas perturbations. This protocol is essential to differentiate between residual traces of environmental CO\(_2\) and the CO\(_2\) molecules produced during the solid-gas reaction.

Fig.8: Homemade reactor (gas feed, furnace, FTIR analysis).

Each vibrational spectrum was recorded over a period of 10 s with intervals of 30 s between two spectra. The total exposure time to the catalyst was two hours. The conversion was analyzed at various fixed temperatures between 175\(^\circ\)C to 525 \(^\circ\)C. The conversion intensity was determined from measurements of the intensities of CO2 absorption bands, at a certain time \(t\) of the gas/solid interaction: in fact, these intensities were determined for a given FTIR measuring time during which a permanent flow of gas passed through the sample. The FTIR intensities of CH\(_4\) or CO absorption peaks varied linearly with the air-gas composition. The value of I(CO\(_2\)) expressed in arbitrary units (a.u.), is directly linked to the derivative dX/dt of the total amount of CO\(_2\) (X) formed during the conversion reaction and also depends on time \(t\). In other words, the integral of the dX/dt curve should directly deliver the total amount of CO\(_2\) associated with CH\(_4\) or CO conversion by the system.

III-2. Results

All experimental data associated with conversion depend on the air/Gas composition, and on the specific surfaces of active powder samples.

The catalytic properties versus temperature of the powders for both gases (CH\(_4\) and CO) have been evaluated under the same conditions. The results are shown in Figures 9 and 10. We observed the same behavior for both gases: the reactivities have significant values at two starting temperatures (425 \(^\circ\)C for CH\(_4\) and 175 \(^\circ\)C for CO) and reach a maximum equilibrium level after about 20-25 min. These temperatures are required to obtain a significant conversion reaction of CH\(_4\) and CO into CO\(_2\). The maximum equilibrium levels increase with temperature and reach a limit of 525\(^\circ\)C for CH\(_4\) and 300\(^\circ\)C for CO. Before these equilibrium states are reached, the kinetic reactions, expressed by the slope \(\Delta I/\Delta t\) obtained during the first 15 minutes, also change with temperature. This explains the increasing conversion speed as the temperature increases.

III-3-1. Interactions with methane.

Figure 9 (a-c) gives the experimental data (in arbitrary units or a.u.) of the conversion intensities I(CO\(_2\)) of the two L and LOC phases interacting with air-CH\(_4\) flows. In Figure 9a, the interaction of CH\(_4\) with the L sample is characterized by a saturation level I(CO\(_2\))\(_{\text{max}}\), which increases with catalysis temperature. The plateau is reached after about 20 minutes.

Fig.9a: La\(_2\)O\(_3\)/CH\(_4\) interaction. FTIR intensity I(CO\(_2\)) associated with the conversion of CH\(_4\) interacting with La\(_2\)O\(_3\) as a function of time at fixed temperatures (absolute surface I(CO\(_2\)) of vibration band in arbitrary units).
III-3-2. Interactions with carbon monoxide.

Figure 10 (a-c) gives the experimental data of the conversion intensities $I(\text{CO}_2)$ of each L, LHC, and LOC phases interacting with air-CO flows (2500 ppm CO in air). To allow comparisons between the individual intensities $I(\text{CO}_2)$ of the LHC, LOC, and L phases, we calculated the effective exposed surface areas for each solid catalyst taking into account the mass introduced into the reactor cell. The effective volume of solids (V_i with index i for LHC, LOC, or L) exposed to gases can be calculated from the densities (μ_i) of the LHC, LOC, or L phases: $V_i = m_i/\mu_i$. The exposed surface areas S_i of each catalyst can be evaluated from their theoretical specific surfaces R_{ss}: $S_i = R_{ss}V_i$. The exposed surface areas S_i are used as scale factors in our determination of the normalized intensities $I^*_i = I(\text{CO}_2)/S_i$.

Tables 3 and 4 give the normalized maximum conversion intensities $I^*_i(\text{CO}_2)$ that take account of the calculated ratios $R_{ss}=S/V$ and the calculated volumes V_i.

Table 3 compares the maximum conversion intensities of the L and LOC solids interacting with CH$_4$ air flows as a function of the temperature. The LOC and L phases show an increasing conversion intensity in the presence of air-CH$_4$ flows, with thermal activation in the temperature range between 425 and 525 °C. Let us recall that LHC does not significantly interact up to 350°C (for CH$_4$ in air) and that it decomposes above this temperature. Table 4 compares the maximum conversion intensities of the L, LOC, and LHC phases interacting with CO-air flows. The conversion intensity increases for the LHC, LOC, and L phases. The reactivity with CO is...
observed at a relatively low temperature compared to the temperature range of CH4 activity. The LHC phase presents an interesting low (but significant) action on CO-air flows. We must point out that experiments at 275°C under air flow proved that the LHC phase was stable and did not deliver any CO2 gas as a result of partial decomposition.

In Tables 3 and 4, we clearly observe that, for a given temperature, the conversion intensity \(I^*_{(CO_2)} \) per surface unit is higher for La2O3 than for the LOC phase. In the case of CO conversion, for a given temperature, the conversion intensity \(I^*_{(CO)} \) is greater for La2O3 than for LOC and LHC phases. These differences in reactivities, expressed for surface units of samples, can be interpreted from the differences in natures of grain surfaces. The LHC phase is constituted of directly synthesized large grains having a needle like morphology. The LOC and L phases are obtained from a thermal decomposition process: grain sizes are smaller and grain morphology results from decomposition of initial LHC needles. The LOC phase results from a reorganization of CO\(_3^2\)-ions after elimination of one water molecule and one CO2 molecule from the LHC lattice. The L structure results from the elimination of CO2 molecules and the structural reorganization gives rise to small L particles with highly active surfaces. This enhanced activity is generally associated with the existence of surface defects and mobile oxygen atoms.

Finally, the large difference observed in the thermal range in which conversion occurs for CH4 and CO can be easily explained by the well-known stability of CH4 associated with the complex steps of the catalytic decomposition in the case of this molecule.

IV. Conclusion

A new synthesis route of the lanthanum hydroxycarbonate has been proposed. This phase is stable up to 350°C. The thermal decomposition delivers the intermediate dioxycarbonate and oxide phases. The interest of these three phases resides in their different thermal stabilities and different gas solid interactions with CH4 and CO. We have evidenced different behaviors of the three phases LHC, LOC and L in presence of CH4-air and CO-air flows. The oxidation of CO occurs at low temperature for the three phases, while higher temperatures are required for the conversion of CH4 into CO2. Consequently, the LaOHCO3 phase is not sensitive to CH4 in its stability temperature range. It should be noted that the polycrystalline solids, LHC, LOC, and L, exhibit increasing reactivities in the presence of air-CO gases. Finally, the most interesting system for gas-sensor technologies should be the LHC phase: it might be sensitive to CO at low temperatures, but not sensitive to CH4 in the same temperature range. As the temperature increases, the LHC could then decompose into the LOC and L phases. At high temperatures,
these last phases could be sensitive to CH$_4$ and CO. New studies are planned to correlate these behaviors with the electrical resistive properties and to evaluate the interest of such systems in gas-sensor technologies.

Acknowledgements. We gratefully acknowledge the Provence–Alpes–Côte d’Azur Regional Council, the General Council of Var, and the agglomeration community of Toulon Provence Mediterranean for their helpful financial supports. This work was developed in the general framework of ARCUS CERES project (2008-2010).

V. References

[1] H. Wakita and S. Kinoshita, “A synthetic study of the solid solutions in the systems La$_2$(CH$_3$)$_3$ ·8H$_2$O–Ce$_2$(CO$_3$)$_3$ ·8H$_2$O and La(OH)CO$_3$–Ce(OH)CO$_3$”; Bulletin of the Chemical Society of Japan, 52 (1979) 428–432.

